@article{ITA_1999__33_4-5_329_0, author = {Arnold, Andr\'e}, title = {The $\mu $-calculus alternation-depth hierarchy is strict on binary trees}, journal = {RAIRO - Theoretical Informatics and Applications - Informatique Th\'eorique et Applications}, pages = {329--339}, publisher = {EDP-Sciences}, volume = {33}, number = {4-5}, year = {1999}, mrnumber = {1748659}, zbl = {0945.68118}, language = {en}, url = {http://archive.numdam.org/item/ITA_1999__33_4-5_329_0/} }
TY - JOUR AU - Arnold, André TI - The $\mu $-calculus alternation-depth hierarchy is strict on binary trees JO - RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications PY - 1999 SP - 329 EP - 339 VL - 33 IS - 4-5 PB - EDP-Sciences UR - http://archive.numdam.org/item/ITA_1999__33_4-5_329_0/ LA - en ID - ITA_1999__33_4-5_329_0 ER -
%0 Journal Article %A Arnold, André %T The $\mu $-calculus alternation-depth hierarchy is strict on binary trees %J RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications %D 1999 %P 329-339 %V 33 %N 4-5 %I EDP-Sciences %U http://archive.numdam.org/item/ITA_1999__33_4-5_329_0/ %G en %F ITA_1999__33_4-5_329_0
Arnold, André. The $\mu $-calculus alternation-depth hierarchy is strict on binary trees. RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications, Tome 33 (1999) no. 4-5, pp. 329-339. http://archive.numdam.org/item/ITA_1999__33_4-5_329_0/
[1] Logical definability of fixed points. Theoret. Comput Sci. 61 (1988) 289-297. | MR | Zbl
,[2] The metric space of infinite trees. Algebraic and topological properties. Fund. Inform. 4 (1980) 445-476. | MR | Zbl
and ,[3] Fixed-point characterization of büchi automata on infinite trees. J. Inf. Process. Cybern. EIK 26 (1990). | Zbl
and ,[4] Fixed point characterization of weak monadic logic definable sets of trees, M. Nivat and A. Podelski, Eds., Tree automata and Languages. Elsevier (1992) 159-188. | MR | Zbl
and ,[5] Fixpoint alternation: Arithmetic, transition Systems, and the binary tree, this issue. | Numdam | Zbl
,[6] The modal mu-calculus alternation hierarchy is strict, U. Montanari and V. Sassone, Eds., in Proc. CONCUR '96, Lecture Notes in Comput. Sci. 1119 (1996) 233-246. | MR
,[7] Simplifying the modal mu-calculus alternation hierarchy, M. Morvan, C. Meinel and D. Krob, Eds., in Proc. STACS '98, Lecture Notes in Comput. Sci. 1373 (1998) 39-49. | MR | Zbl
,[8] Tree automata, mu-calculus and determinacy, in Proc. FOCS '91. IEEE Computer Society Press (1991) 368-377.
and ,[9] Trees, automata and games, in Proc. 14th ACM Symp. on the Theory of Computing (1982) 60-65.
and ,[10] A hierarchy theorem for the mu-calculus, F. Meyer auf der Heide and B. Monien, Eds., in Proc. ICALP '96, Lecture Notes in Comput. Sci. 1099 (1996) 87-109. | MR | Zbl
,[11] Hierarchies of weak automata and weak monadic formulas. Theoret. Comput. Sci. 83 (1991) 323-335. | MR | Zbl
,[12] Alternating automata, the weak monadic theory of the tree and its complexity. Theoret Comput. Sci. 97 (1992) 233-244. | MR | Zbl
, and ,[13] Alternating automata on infinite trees, Theoret. Comput. Sci. 54 (1987) 267-276. | MR | Zbl
and ,[14] On fixed point clones, L. Kott, Ed., in Proc. 13th ICALP, Lecture Notes in Comput. Sci. 226 (1986) 464-473. | MR | Zbl
,[15] Fixed points characterization of infinite behaviour of finite state Systems. Theoret. Comput. Sci. 189 (1997) 1-69. | Zbl
,[16] A hierarchy of sets of infinite trees, A. B. Cremers and H. P. Kriegel, Eds., Theoret. Comput. Sci., Lecture Notes in Comput. Sci. 145 (1983) 335-342. | Zbl
,[17] Monadic second-order logic on tree-like structures, C. Puech and R. Reischuk, Eds., in Proc. STACS '96, Lecture Notes in Comput. Sci. 1046 (1996) 401-414. | MR
,