A decomposition of a set of words over a -letter alphabet is any sequence of subsets of such that the sets , are pairwise disjoint, their union is , and for all , , , where denotes the commutative equivalence relation. We introduce some suitable decompositions that we call good, admissible, and normal. A normal decomposition is admissible and an admissible decomposition is good. We prove that a set is commutatively prefix if and only if it has a normal decomposition. In particular, we consider decompositions of Bernoulli sets and codes. We prove that there exist Bernoulli sets which have no good decomposition. Moreover, we show that the classical conjecture of commutative equivalence of finite maximal codes to prefix ones is equivalent to the statement that any finite and maximal code has an admissible decomposition.
Mots-clés : Bernoulli sets, codes, decompositions, commutative equivalence
@article{ITA_2005__39_1_161_0, author = {Luca, Aldo de}, title = {Some decompositions of {Bernoulli} sets and codes}, journal = {RAIRO - Theoretical Informatics and Applications - Informatique Th\'eorique et Applications}, pages = {161--174}, publisher = {EDP-Sciences}, volume = {39}, number = {1}, year = {2005}, doi = {10.1051/ita:2005010}, mrnumber = {2132585}, zbl = {1073.94008}, language = {en}, url = {http://archive.numdam.org/articles/10.1051/ita:2005010/} }
TY - JOUR AU - Luca, Aldo de TI - Some decompositions of Bernoulli sets and codes JO - RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications PY - 2005 SP - 161 EP - 174 VL - 39 IS - 1 PB - EDP-Sciences UR - http://archive.numdam.org/articles/10.1051/ita:2005010/ DO - 10.1051/ita:2005010 LA - en ID - ITA_2005__39_1_161_0 ER -
%0 Journal Article %A Luca, Aldo de %T Some decompositions of Bernoulli sets and codes %J RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications %D 2005 %P 161-174 %V 39 %N 1 %I EDP-Sciences %U http://archive.numdam.org/articles/10.1051/ita:2005010/ %R 10.1051/ita:2005010 %G en %F ITA_2005__39_1_161_0
Luca, Aldo de. Some decompositions of Bernoulli sets and codes. RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications, Tome 39 (2005) no. 1, pp. 161-174. doi : 10.1051/ita:2005010. http://archive.numdam.org/articles/10.1051/ita:2005010/
[1] Theory of Codes. Academic Press, New York (1985). | MR | Zbl
and ,[2] Completions in measure of languages and related combinatorial problems. Theor. Comput. Sci. To appear. | MR | Zbl
and ,[3] On the triangle conjecture. Inform. Process. Lett. 14 (1982) 197-200. | Zbl
,[4] Some combinatorial results on Bernoulli sets and codes. Theor. Comput. Sci. 273 (2002) 143-165. | Zbl
,[5] Baïonnettes et cardinaux. Discrete Math. 39 (1982) 331-335. | Zbl
,[6] Un problème élémentaire de la théorie de l'Information, in Theorie de l'Information, Colloq. Internat. du CNRS No. 276, Cachan (1977) 249-260. | Zbl
and ,[7] A conjecture on sets of differences on integer pairs. J. Combin. Theory Ser. B 30 (1981) 91-93. | Zbl
and ,[8] A note on the triangle conjecture. J. Comb. Theory Ser. A 32 (1982) 106-109. | Zbl
and ,[9] A counterexample to the triangle conjecture. J. Comb. Theory Ser. A 38 (1985) 110-112. | Zbl
,Cité par Sources :