A note on the Size-Ramsey number of long subdivisions of graphs
RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications, Tome 39 (2005) no. 1, pp. 191-206.

Let T s H be the graph obtained from a given graph H by subdividing each edge s times. Motivated by a problem raised by Igor Pak [Mixing time and long paths in graphs, in Proc. of the 13th annual ACM-SIAM Symposium on Discrete Algorithms (SODA 2002) 321-328], we prove that, for any graph H, there exist graphs G with O(s) edges that are Ramsey with respect to T s H.

DOI : 10.1051/ita:2005019
Classification : 05C55, 05D40
Mots clés : The Size-Ramsey number, Ramsey theory, expanders, Ramanujan graphs, explicit constructions
@article{ITA_2005__39_1_191_0,
     author = {Donadelli, Jair and Haxell, Penny E. and Kohayakawa, Yoshiharu},
     title = {A note on the {Size-Ramsey} number of long subdivisions of graphs},
     journal = {RAIRO - Theoretical Informatics and Applications - Informatique Th\'eorique et Applications},
     pages = {191--206},
     publisher = {EDP-Sciences},
     volume = {39},
     number = {1},
     year = {2005},
     doi = {10.1051/ita:2005019},
     mrnumber = {2132587},
     zbl = {1075.05054},
     language = {en},
     url = {http://archive.numdam.org/articles/10.1051/ita:2005019/}
}
TY  - JOUR
AU  - Donadelli, Jair
AU  - Haxell, Penny E.
AU  - Kohayakawa, Yoshiharu
TI  - A note on the Size-Ramsey number of long subdivisions of graphs
JO  - RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications
PY  - 2005
SP  - 191
EP  - 206
VL  - 39
IS  - 1
PB  - EDP-Sciences
UR  - http://archive.numdam.org/articles/10.1051/ita:2005019/
DO  - 10.1051/ita:2005019
LA  - en
ID  - ITA_2005__39_1_191_0
ER  - 
%0 Journal Article
%A Donadelli, Jair
%A Haxell, Penny E.
%A Kohayakawa, Yoshiharu
%T A note on the Size-Ramsey number of long subdivisions of graphs
%J RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications
%D 2005
%P 191-206
%V 39
%N 1
%I EDP-Sciences
%U http://archive.numdam.org/articles/10.1051/ita:2005019/
%R 10.1051/ita:2005019
%G en
%F ITA_2005__39_1_191_0
Donadelli, Jair; Haxell, Penny E.; Kohayakawa, Yoshiharu. A note on the Size-Ramsey number of long subdivisions of graphs. RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications, Tome 39 (2005) no. 1, pp. 191-206. doi : 10.1051/ita:2005019. http://archive.numdam.org/articles/10.1051/ita:2005019/

[1] N. Alon and F.R.K. Chung, Explicit construction of linear sized tolerant networks. Discrete Math. 72 (1988) 15-19. | Zbl

[2] N. Alon, Subdivided graphs have linear Ramsey numbers. J. Graph Theory 18 (1994) 343-347. | Zbl

[3] N. Alon and J.H. Spencer, The probabilistic method, 2nd edition, Ser. Discrete Math.Optim., Wiley-Interscience, John Wiley & Sons, New York, 2000. (With an appendix on the life and work of Paul Erdős.) | MR | Zbl

[4] J. Beck, On size Ramsey number of paths, trees, and circuits. I. J. Graph Theory 7 (1983) 115-129. | Zbl

[5] J. Beck, On size Ramsey number of paths, trees and circuits. II. Mathematics of Ramsey theory, Springer, Berlin, Algorithms Combin. 5 (1990) 34-45. | Zbl

[6] V. Chvátal, V. Rödl, E. Szemerédi and W.T. Trotter Jr., The Ramsey number of a graph with bounded maximum degree. J. Combin. Theory Ser. B 34 (1983) 239-243. | Zbl

[7] R. Diestel, Graph theory. Springer-Verlag, New York (1997). Translated from the 1996 German original. | MR | Zbl

[8] P. Erdős, R.J. Faudree, C.C. Rousseau and R.H. Schelp, The size Ramsey number. Periodica Mathematica Hungarica 9 (1978) 145-161. | Zbl

[9] P. Erdős and R.L. Graham, On partition theorems for finite graphs, Infinite and finite sets (Colloq., Keszthely, 1973; dedicated to P. Erdős on his 60th birthday), Vol. I. North-Holland, Amsterdam, Colloq. Math. Soc. János Bolyai 10 (1975) 515-527. | Zbl

[10] R.J. Faudree and R.H. Schelp, A survey of results on the size Ramsey number, Paul Erdős and his mathematics, II (Budapest, 1999). Bolyai Soc. Math. Stud., János Bolyai Math. Soc., Budapest 11 (2002) 291-309. | Zbl

[11] J. Friedman and N. Pippenger, Expanding graphs contain all small trees. Combinatorica 7 (1987) 71-76. | Zbl

[12] P.E. Haxell, Partitioning complete bipartite graphs by monochromatic cycles. J. Combin. Theory Ser. B 69 (1997) 210-218. | Zbl

[13] P.E. Haxell and Y. Kohayakawa, The size-Ramsey number of trees. Israel J. Math. 89 (1995) 261-274. | Zbl

[14] P.E. Haxell, Y. Kohayakawa and T. Łuczak, The induced size-Ramsey number of cycles. Combin. Probab. Comput. 4 (1995) 217-239. | Zbl

[15] P.E. Haxell and T. Łuczak, Embedding trees into graphs of large girth. Discrete Math. 216 (2000) 273-278. | Zbl

[16] P.E. Haxell, T. Łuczak and P.W. Tingley, Ramsey numbers for trees of small maximum degree. Combinatorica 22 (2002) 287-320. Special issue: Paul Erdős and his mathematics. | Zbl

[17] T. Jiang, On a conjecture about trees in graphs with large girth. J. Combin. Theory Ser. B 83 (2001) 221-232. | Zbl

[18] Xin Ke, The size Ramsey number of trees with bounded degree. Random Structures Algorithms 4 (1993) 85-97. | Zbl

[19] Y. Kohayakawa, Szemerédi's regularity lemma for sparse graphs, Foundations of computational mathematics (Rio de Janeiro, 1997). Springer, Berlin (1997) 216-230. | Zbl

[20] Y. Kohayakawa and V. Rödl, Regular pairs in sparse random graphs. I. Random Structures Algorithms 22 (2003) 359-434. | Zbl

[21] Y. Kohayakawa and V. Rödl, Szemerédi's regularity lemma and quasi-randomness, in Recent advances in algorithms and combinatorics. CMS Books Math./Ouvrages Math. SMC, Springer, New York 11 (2003) 289-351. | Zbl

[22] A. Lubotzky, R. Phillips and P. Sarnak, Ramanujan graphs. Combinatorica 8 (1988) 261-277. | Zbl

[23] G.A. Margulis, Explicit group-theoretic constructions of combinatorial schemes and their applications in the construction of expanders and concentrators. Problemy Peredachi Informatsii 24 (1988) 51-60. | Zbl

[24] I. Pak, Mixing time and long paths in graphs, manuscript available at http://www-math.mit.edu/~pak/research.html#r (June 2001).

[25] I. Pak, Mixing time and long paths in graphs, in Proceedings of the 13th annual ACM-SIAM Symposium on Discrete Algorithms (SODA 2002) 321-328. | Zbl

[26] O. Pikhurko, Asymptotic size Ramsey results for bipartite graphs. SIAM J. Discrete Math. 16 (2002) 99-113 (electronic). | Zbl

[27] O. Pikhurko, Size Ramsey numbers of stars versus 4-chromatic graphs. J. Graph Theory 42 (2003) 220-233. | Zbl

[28] L. Pósa, Hamiltonian circuits in random graphs. Discrete Math. 14 (1976) 359-364. | Zbl

[29] D. Reimer, The Ramsey size number of dipaths. Discrete Math. 257 (2002) 173-175. | Zbl

[30] V. Rödl and E. Szemerédi, On size Ramsey numbers of graphs with bounded degree. Combinatorica 20 (2000) 257-262. | Zbl

[31] E. Szemerédi, Regular partitions of graphs, in Problèmes combinatoires et théorie des graphes (Colloq. Internat. CNRS, Univ. Orsay, Orsay, 1976). CNRS, Paris (1978) 399-401. | Zbl

Cité par Sources :