This paper analyses the complexity of model checking fixpoint logic with Chop - an extension of the modal -calculus with a sequential composition operator. It uses two known game-based characterisations to derive the following results: the combined model checking complexity as well as the data complexity of FLC are EXPTIME-complete. This is already the case for its alternation-free fragment. The expression complexity of FLC is trivially P-hard and limited from above by the complexity of solving a parity game, i.e. in UPco-UP. For any fragment of fixed alternation depth, in particular alternation- free formulas it is P-complete.
Mots-clés : model checking, games, EXPTIME-complete
@article{ITA_2007__41_2_177_0, author = {Lange, Martin}, title = {Three notes on the complexity of model checking fixpoint logic with chop}, journal = {RAIRO - Theoretical Informatics and Applications - Informatique Th\'eorique et Applications}, pages = {177--190}, publisher = {EDP-Sciences}, volume = {41}, number = {2}, year = {2007}, doi = {10.1051/ita:2007011}, mrnumber = {2350643}, zbl = {1133.68046}, language = {en}, url = {http://archive.numdam.org/articles/10.1051/ita:2007011/} }
TY - JOUR AU - Lange, Martin TI - Three notes on the complexity of model checking fixpoint logic with chop JO - RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications PY - 2007 SP - 177 EP - 190 VL - 41 IS - 2 PB - EDP-Sciences UR - http://archive.numdam.org/articles/10.1051/ita:2007011/ DO - 10.1051/ita:2007011 LA - en ID - ITA_2007__41_2_177_0 ER -
%0 Journal Article %A Lange, Martin %T Three notes on the complexity of model checking fixpoint logic with chop %J RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications %D 2007 %P 177-190 %V 41 %N 2 %I EDP-Sciences %U http://archive.numdam.org/articles/10.1051/ita:2007011/ %R 10.1051/ita:2007011 %G en %F ITA_2007__41_2_177_0
Lange, Martin. Three notes on the complexity of model checking fixpoint logic with chop. RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications, Tome 41 (2007) no. 2, pp. 177-190. doi : 10.1051/ita:2007011. http://archive.numdam.org/articles/10.1051/ita:2007011/
[1] Programming Languages and Their Definition, Selected Papers. Lect. Notes Comput. Sci. 177 (1984). | MR | Zbl
,[2] An improved algorithm for the evaluation of fixpoint expressions. TCS 178 (1997) 237-255. | Zbl
, , , and ,[3] Tableau-based model checking in the propositional -calculus. Acta Informatica 27 (1990) 725-748. | Zbl
,[4] Inflationary fixed points in modal logic, in Proc. 15th Workshop on Computer Science Logic, CSL'01, edited by L. Fribourg, Paris, France. Lect. Notes Comput. Sci. 277-291 (2001). | Zbl
, and ,[5] On the expression complexity of the modal -calculus model checking. Unpublished manuscript (1996).
, and ,[6] Tree automata, -calculus and determinacy, in Proc. 32nd Symp. on Foundations of Computer Science, San Juan, Puerto Rico 368-377 (1991). IEEE.
and ,[7] On model-checking for fragments of -calculus, in Proc. 5th Conf. on Computer Aided Verification, CAV'93. Lect. Notes Comput. Sci. 697 (1993) 385-396.
, and ,[8] Zbl
, and , Eds. Automata, Logics, and Infinite Games. Lect. Notes Comput. Sci. (2002). |[9] On the expressive completeness of the propositional -calculus with respect to monadic second order logic, in Proc. 7th Conf. on Concurrency Theory, CONCUR'96, edited by U. Montanari and V. Sassone, Pisa, Italy. Lect. Notes Comput. Sci. 1119 (1996) 263-277.
and ,[10] Deciding the winner in parity games is in co-. Inform. Process. Lett. 68 (1998) 119-124.
,[11] Small progress measures for solving parity games, in Proc. 17th Ann. Symp. on Theoretical Aspects of Computer Science, STACS'00, edited by H. Reichel and S. Tison. Lect. Notes Comput. Sci. 1770 (2000) 290-301. | Zbl
,[12] Results on the propositional -calculus. TCS 27 (1983) 333-354. | Zbl
,[13] Alternating context-free languages and linear time -calculus with sequential composition, in Proc. 9th Workshop on Expressiveness in Concurrency, EXPRESS'02, edited by P. Panangaden and U. Nestmann, Brno, Czech Republic, Elsevier. ENTCS 68.2 (2002) 71-87.
,[14] Local model checking games for fixed point logic with chop, in Proc. 13th Conf. on Concurrency Theory, CONCUR'02, edited by L. Brim, P. Jančar, M. Křetínský and A. Kučera, Brno, Czech Republic. Lect. Notes Comput. Sci. 2421 (2002) 240-254. | Zbl
,[15] The complexity of model checking higher order fixpoint logic, in Proc. 30th Int. Symp. on Math. Foundations of Computer Science, MFCS'05, edited by J. Jedrzejowicz and A. Szepietowski, Gdansk, Poland. Lect. Notes Comput. Sci. 3618 (2005) 640-651.
and ,[16] Model checking fixed point logic with chop, in Proc. 5th Conf. on Foundations of Software Science and Computation Structures, FOSSACS'02, edited by M. Nielsen and U. H. Engberg, Grenoble, France. Lect. Notes Comput. Sci. 2303 (2002) 250-263. | Zbl
and ,[17] A modal fixpoint logic with chop, in Proc. 16th Symp. on Theoretical Aspects of Computer Science, STACS'99, edited by C. Meinel and S. Tison, Trier, Germany. Lect. Notes Comput. Sci. 1563 (1999) 510-520. | Zbl
,[18] Fast and simple nested fixpoint. Inform. Process. Lett. 59 (1996) 303-308. | Zbl
,[19] Local model checking games, in Proc. 6th Conf. on Concurrency Theory, CONCUR'95, edited by I. Lee and S. A. Smolka, Berlin, Germany. Lect. Notes Comput. Sci. 962 (1995) 1-11.
,[20] A higher order modal fixed point logic, in Proc. 15th Int. Conf. on Concurrency Theory, CONCUR'04, edited by Ph. Gardner and N. Yoshida, London, UK. Lect. Notes Comput. Sci. 3170 (2004) 512-528. | Zbl
and ,[21] Pushdown processes: Games and model-checking. Inform. Comput. 164 (2001) 234-263. | Zbl
,Cité par Sources :