In this paper, we characterize the substitutions over a three-letter alphabet which generate a ultimately periodic sequence.
@article{ITA_2008__42_4_747_0, author = {Tan, Bo and Wen, Zhi-Ying}, title = {Periodicity problem of substitutions over ternary alphabets}, journal = {RAIRO - Theoretical Informatics and Applications - Informatique Th\'eorique et Applications}, pages = {747--762}, publisher = {EDP-Sciences}, volume = {42}, number = {4}, year = {2008}, doi = {10.1051/ita:2007057}, mrnumber = {2458705}, language = {en}, url = {http://archive.numdam.org/articles/10.1051/ita:2007057/} }
TY - JOUR AU - Tan, Bo AU - Wen, Zhi-Ying TI - Periodicity problem of substitutions over ternary alphabets JO - RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications PY - 2008 SP - 747 EP - 762 VL - 42 IS - 4 PB - EDP-Sciences UR - http://archive.numdam.org/articles/10.1051/ita:2007057/ DO - 10.1051/ita:2007057 LA - en ID - ITA_2008__42_4_747_0 ER -
%0 Journal Article %A Tan, Bo %A Wen, Zhi-Ying %T Periodicity problem of substitutions over ternary alphabets %J RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications %D 2008 %P 747-762 %V 42 %N 4 %I EDP-Sciences %U http://archive.numdam.org/articles/10.1051/ita:2007057/ %R 10.1051/ita:2007057 %G en %F ITA_2008__42_4_747_0
Tan, Bo; Wen, Zhi-Ying. Periodicity problem of substitutions over ternary alphabets. RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications, Tome 42 (2008) no. 4, pp. 747-762. doi : 10.1051/ita:2007057. http://archive.numdam.org/articles/10.1051/ita:2007057/
[1] Uniqueness theorem for periodic functions. Proc. Amer. Math. Soc. 16 (1965) 109-114. | MR | Zbl
and ,[2] On the periodicity of morphisms on free monoids. RAIRO-Theor. Inf. Appl. 20 (1986) 47-54. | Numdam | MR | Zbl
and ,[3] Fixed languages and the adult language of 0L schemes. Int. J. Comput. Math. 10 (1981) 103-107. | MR | Zbl
,[4] Periodicity and ultimate periodicity of D0L systems. Theor. Comput. Sci. 82 (1991) 19-33. | MR | Zbl
,[5] Combinatorics on Words. Encyclopedia of Mathematics and its Applications, Vol. 17, Addison-Wesley (1983). | MR | Zbl
,[6] Decidability of periodicity for infinite words. RAIRO-Theor. Inf. Appl. 20 (1986) 43-46. | Numdam | MR | Zbl
,[7] The Mathematical Theory of L Systems. Academic Press, New York (1980). | MR | Zbl
and ,[8] An effective solution to the D0L periodicity problem in the binary case. EATCS Bull. 36 (1988) 137-151. | Zbl
,Cité par Sources :