In this article, we study the complexity of drunken man infinite words. We show that these infinite words, generated by a deterministic and complete countable automaton, or equivalently generated by a substitution over a countable alphabet of constant length, have complexity functions equivalent to when goes to infinity.
@article{ITA_2008__42_3_599_0, author = {Gonidec, Marion Le}, title = {Drunken man infinite words complexity}, journal = {RAIRO - Theoretical Informatics and Applications - Informatique Th\'eorique et Applications}, pages = {599--613}, publisher = {EDP-Sciences}, volume = {42}, number = {3}, year = {2008}, doi = {10.1051/ita:2008012}, mrnumber = {2434037}, language = {en}, url = {http://archive.numdam.org/articles/10.1051/ita:2008012/} }
TY - JOUR AU - Gonidec, Marion Le TI - Drunken man infinite words complexity JO - RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications PY - 2008 SP - 599 EP - 613 VL - 42 IS - 3 PB - EDP-Sciences UR - http://archive.numdam.org/articles/10.1051/ita:2008012/ DO - 10.1051/ita:2008012 LA - en ID - ITA_2008__42_3_599_0 ER -
%0 Journal Article %A Gonidec, Marion Le %T Drunken man infinite words complexity %J RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications %D 2008 %P 599-613 %V 42 %N 3 %I EDP-Sciences %U http://archive.numdam.org/articles/10.1051/ita:2008012/ %R 10.1051/ita:2008012 %G en %F ITA_2008__42_3_599_0
Gonidec, Marion Le. Drunken man infinite words complexity. RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications, Tome 42 (2008) no. 3, pp. 599-613. doi : 10.1051/ita:2008012. http://archive.numdam.org/articles/10.1051/ita:2008012/
[1] Sur la complexité des suites infinies. Bull. Belg. Math. Soc. Simon Stevin 1 (1994) 133-143. | MR | Zbl
,[2] Automatic sequences. Theory, applications, generalizations. Cambridge University Press (2003). | MR | Zbl
and ,[3] Special factors of sequences with linear subword complexity. In Developments in language theory (Magdeburg, 1995), World Sci. Publishing (1996) 25-34. | MR | Zbl
,[4] Complexité et facteurs spéciaux. Bull. Belg. Math. Soc. Simon Stevin 4 (1997) 67-88. | MR | Zbl
,[5] Uniform-tag sequences. Math. Syst. Theory 6 (1972) 164-192. | MR | Zbl
,[6] Complexity of sequences and dynamical systems. Discrete Math. 206 (1999) 145-154. | MR | Zbl
,[7] Substitution dynamical systems on infinite alphabets. Ann. Inst. Fourier 56 (2006) 2315-2343. | Numdam | MR | Zbl
,[8] Sur les entiers dont la somme des chiffres est moyenne. J. Number Theory 114 (2005) 135-152. | MR | Zbl
and ,[9] Topological and symbolic dynamics, Cours spécialisés Vol. 11, SMF (2003). | MR | Zbl
,[10] Sur la complexité de mots infinis engendrés par des -automates dénombrables. Ann. Inst. Fourier 56 (2006) 2463-2491. | Numdam | MR | Zbl
,[11] Sur la complexité des mots -automatiques. Ph.D. thesis, Université Aix-Marseille II (2006).
,[12] Propriétés arithmétiques des substitutions et automates infinis. Ann. Inst. Fourier 56 (2006) 2525-2549. | Numdam | MR | Zbl
,[13] On the arithmetic structure of sets characterized by sum of digits properties. J. Number Theory 61 (1996) 25-38. | MR | Zbl
and ,[14] Complexité des facteurs des mots infinis engendrés par morphismes itérés. Lecture Notes Comput. Sci. 172 (1985) 380-389. Automata, languages and programming (Antwerp, 1984). | MR | Zbl
,[15] Kolmogorov complexity of infinite words. CDMTCS Research Report Series 279 (2006). | MR
,Cité par Sources :