A discontinuous Galerkin finite element method for an optimal control problem related to semilinear parabolic PDE's is examined. The schemes under consideration are discontinuous in time but conforming in space. Convergence of discrete schemes of arbitrary order is proven. In addition, the convergence of discontinuous Galerkin approximations of the associated optimality system to the solutions of the continuous optimality system is shown. The proof is based on stability estimates at arbitrary time points under minimal regularity assumptions, and a discrete compactness argument for discontinuous Galerkin schemes (see Walkington [SINUM (June 2008) (submitted), preprint available at http://www.math.cmu.edu/~noelw], Sects. 3, 4).
Mots clés : discontinuous Galerkin approximations, distributed controls, stability estimates, semi-linear parabolic PDE's
@article{M2AN_2010__44_1_189_0, author = {Chrysafinos, Konstantinos}, title = {Convergence of discontinuous {Galerkin} approximations of an optimal control problem associated to semilinear parabolic {PDE's}}, journal = {ESAIM: Mod\'elisation math\'ematique et analyse num\'erique}, pages = {189--206}, publisher = {EDP-Sciences}, volume = {44}, number = {1}, year = {2010}, doi = {10.1051/m2an/2009046}, mrnumber = {2647758}, zbl = {1191.65074}, language = {en}, url = {http://archive.numdam.org/articles/10.1051/m2an/2009046/} }
TY - JOUR AU - Chrysafinos, Konstantinos TI - Convergence of discontinuous Galerkin approximations of an optimal control problem associated to semilinear parabolic PDE's JO - ESAIM: Modélisation mathématique et analyse numérique PY - 2010 SP - 189 EP - 206 VL - 44 IS - 1 PB - EDP-Sciences UR - http://archive.numdam.org/articles/10.1051/m2an/2009046/ DO - 10.1051/m2an/2009046 LA - en ID - M2AN_2010__44_1_189_0 ER -
%0 Journal Article %A Chrysafinos, Konstantinos %T Convergence of discontinuous Galerkin approximations of an optimal control problem associated to semilinear parabolic PDE's %J ESAIM: Modélisation mathématique et analyse numérique %D 2010 %P 189-206 %V 44 %N 1 %I EDP-Sciences %U http://archive.numdam.org/articles/10.1051/m2an/2009046/ %R 10.1051/m2an/2009046 %G en %F M2AN_2010__44_1_189_0
Chrysafinos, Konstantinos. Convergence of discontinuous Galerkin approximations of an optimal control problem associated to semilinear parabolic PDE's. ESAIM: Modélisation mathématique et analyse numérique, Tome 44 (2010) no. 1, pp. 189-206. doi : 10.1051/m2an/2009046. http://archive.numdam.org/articles/10.1051/m2an/2009046/
[1] Galerkin time-stepping methods for nonlinear parabolic equations. ESAIM: M2AN 38 (2004) 261-289. | Numdam | Zbl
and ,[2] Distributed optimal control for lambda-omega systems. J. Numer. Math. 14 (2006) 17-40. | Zbl
and ,[3] Analyse fonctionnelle - Theorie et applications. Masson, Paris, France (1983). | Zbl
,[4] Discontinous Galerkin approximations for distributed optimal control problems constrained to linear parabolic PDE's. Int. J. Numer. Anal. Mod. 4 (2007) 690-712. | Zbl
,[5] Error estimates for the discontinuous Galerkin methods for parabolic equations. SIAM J. Numer. Anal. 44 (2006) 349-366. | Zbl
and ,[6] Lagrangian and moving mesh methods for the convection diffusion equation. ESAIM: M2AN 42 (2008) 25-55. | Numdam | Zbl
and ,[7] Discontinuous Galerkin approximations of the Stokes and Navier-Stokes equations. Math. Comp. (to appear), available at http://www.math.cmu.edu/ noelw.
and ,[8] Semidiscrete approximations of optimal Robin boundary control problems constrained by semilinear parabolic PDE. J. Math. Anal. Appl. 323 (2006) 891-912.
, and ,[9] The finite element method for elliptic problems, Classics in Applied Mathematics 40. SIAM (2002). | Zbl
,[10] Semidiscretization and error estimates for distributed control of the instationary Navier-Stokes equations. Numer. Math. 97 (2004) 297-320. | Zbl
and ,[11] Adaptive finite element methods for parabolic problems. I. A linear model problem. SIAM J. Numer. Anal. 28 (1991) 43-77. | Zbl
and ,[12] Adaptive finite element methods for parabolic problems 32 (1995) 706-740. | Zbl
and ,[13] Adaptive finite element methods for parabolic problems IV: Nonlinear problems. SIAM J. Numer. Anal. 32 (1995) 1729-1749. | Zbl
and ,[14] Time discretization of parabolic problems by the discontinuous Galerkin method. RAIRO Modél. Math. Anal. Numér. 29 (1985) 611-643. | EuDML | Numdam | Zbl
, and ,[15] The discontinuous Galerkin method for semilinear parabolic equations. RAIRO Modél. Math. Anal. Numér. 27 (1993) 35-54. | EuDML | Numdam | Zbl
and ,[16] Partial Differential Equations. AMS, Providence, USA (1998). | Zbl
,[17] Approximation of a class of otimal control problems with order of convergence estimates. J. Math. Anal. Appl. 44 (1973) 28-47. | Zbl
,[18] Optimal control of distributed systems - Theory and applications. AMS, Providence, USA (2000). | Zbl
,[19] Optimal control of a nutrient-phytoplankton-zooplankton-fish system. SIAM J. Control Optim. 46 (2007) 775-791. | Zbl
and ,[20] Finite Element Methods for Navier-Stokes. Springer-Verlag, New York, USA (1986).
and ,[21] Perspectives in flow control and optimization, Advances in Design and Control. SIAM, Philadelphia, USA (2003). | Zbl
,[22] Analysis and approximation of the velocity tracking problem for Navier-Stokes flows with distributed control. SIAM J. Numer. Anal. 37 (2000) 1481-1512. | Zbl
and ,[23] Analysis and finite element approximation of optimal control problems for the stationary Navier-Stokes equations with Dirichlet controls. RAIRO Modél. Math. Anal. Numer. 25 (1991) 711-748. | EuDML | Numdam | Zbl
, and ,[24] Analysis and discretization of an optimal control problem for the forced Fisher equation. Discrete Contin. Dyn. Syst. Ser. B 8 (2007) 569-587. | Zbl
, , and ,[25] Second order methods for optimal control of time-dependent fluid flow. SIAM J. Control Optim. 40 (2001) 925-946. | Zbl
and ,[26] Analysis and approximations of a terminal-state optimal control problem constrained by semilinear parabolic PDEs. Int. J. Numer. Anal. Model. 4 (2007) 713-728. | Zbl
, and ,[27] Finite element approximation of parabolic time optimal control problems. SIAM J. Control Optim. 20 (1982) 414-427. | Zbl
,[28] Rietz-Galerkin approximation of the time optimal boundary control problem for parabolic systems with Dirichlet boundary conditions. SIAM J. Control Optim. 22 (1984) 477-500. | Zbl
,[29] Control theory for partial differential equations. Cambridge University Press, Cambridge, UK (2000). | Zbl
and ,[30] Some aspects of the control of distributed parameter systems. Conference Board of the Mathematical Sciences, SIAM (1972).
,[31] A posteriori error estimates for optimal control problems governed by parabolic equations. Numer. Math. 93 (2003) 497-521. | Zbl
and ,[32] A posteriori error estimates for DG time-stepping method for optimal control problems governed by parabolic equations. SIAM J. Numer. Anal. 42 (2004) 1032-1061. | Zbl
, , and ,[33] Convergence of approximations vs. regularity of solutions for convex, control-constrained optimal-control problems. Appl. Math. Optim. 8 (1981) 69-95. | Zbl
,[34] Adaptive space-time finite element methods for parabolic optimization problems. SIAM J. Control Optim. 46 (2007) 116-142. | Zbl
and ,[35] A priori error estimates for space-time finite element discretization of parabolic optimal control problems. Part I: Problems without control constraints. SIAM J. Control Optim. 47 (2008) 1150-1177. | Zbl
and ,[36] Optimal control of nonlinear parabolic systems - Theory, algorithms and applications. M. Dekker, New York, USA (1994). | Zbl
and ,[37] Error estimates for parabolic optimal control problems with control constraints. Zeitschrift Anal. Anwendungen 23 (2004) 353-376. | Zbl
,[38] Navier-Stokes equations. North Holland (1977). | Zbl
,[39] Galerkin finite element methods for parabolic problems. Spinger-Verlag, Berlin, Germany (1997). | Zbl
,[40] Semidiscrete Ritz-Galerkin approximation of nonlinear parabolic boundary control problems. International Series of Numerical Math. 111 (1993) 57-68. | Zbl
,[41] Semidiscrete Ritz-Galerkin approximation of nonlinear parabolic boundary control problems - Strong convergence of optimal controls. Appl. Math. Optim. 29 (1994) 309-329. | Zbl
,[42] Compactness properties of the DG and CG time stepping schemes for parabolic equations. SINUM (June 2008) (submitted), preprint available at http://www.math.cmu.edu/~noelw. | Zbl
,[43] Error estimates for a Galerkin approximation of a parabolic control problem. Ann. Math. Pura Appl. 117 (1978) 173-206. | Zbl
,[44] Initial value methods for parabolic control problems. Math. Comp. 34 (1980) 115-125. | Zbl
,[45] Nonlinear functional analysis and its applications, II/B Nonlinear monotone operators. Springer-Verlag, New York, USA (1990). | Zbl
,Cité par Sources :