We consider a general abstract framework of a continuous elliptic problem set on a Hilbert space V that is approximated by a family of (discrete) problems set on a finite-dimensional space of finite dimension not necessarily included into V. We give a series of realistic conditions on an error estimator that allows to conclude that the marking strategy of bulk type leads to the geometric convergence of the adaptive algorithm. These conditions are then verified for different concrete problems like convection-reaction-diffusion problems approximated by a discontinuous Galerkin method with an estimator of residual type or obtained by equilibrated fluxes. Numerical tests that confirm the geometric convergence are presented.
Keywords: a posteriori estimator, adaptive FEM, discontinuous Galerkin FEM
@article{M2AN_2010__44_3_485_0, author = {Nicaise, Serge and Cochez-Dhondt, Sarah}, title = {Adaptive finite element methods for elliptic problems : abstract framework and applications}, journal = {ESAIM: Mod\'elisation math\'ematique et analyse num\'erique}, pages = {485--508}, publisher = {EDP-Sciences}, volume = {44}, number = {3}, year = {2010}, doi = {10.1051/m2an/2010010}, mrnumber = {2666652}, zbl = {1191.65158}, language = {en}, url = {http://archive.numdam.org/articles/10.1051/m2an/2010010/} }
TY - JOUR AU - Nicaise, Serge AU - Cochez-Dhondt, Sarah TI - Adaptive finite element methods for elliptic problems : abstract framework and applications JO - ESAIM: Modélisation mathématique et analyse numérique PY - 2010 SP - 485 EP - 508 VL - 44 IS - 3 PB - EDP-Sciences UR - http://archive.numdam.org/articles/10.1051/m2an/2010010/ DO - 10.1051/m2an/2010010 LA - en ID - M2AN_2010__44_3_485_0 ER -
%0 Journal Article %A Nicaise, Serge %A Cochez-Dhondt, Sarah %T Adaptive finite element methods for elliptic problems : abstract framework and applications %J ESAIM: Modélisation mathématique et analyse numérique %D 2010 %P 485-508 %V 44 %N 3 %I EDP-Sciences %U http://archive.numdam.org/articles/10.1051/m2an/2010010/ %R 10.1051/m2an/2010010 %G en %F M2AN_2010__44_3_485_0
Nicaise, Serge; Cochez-Dhondt, Sarah. Adaptive finite element methods for elliptic problems : abstract framework and applications. ESAIM: Modélisation mathématique et analyse numérique, Volume 44 (2010) no. 3, pp. 485-508. doi : 10.1051/m2an/2010010. http://archive.numdam.org/articles/10.1051/m2an/2010010/
[1] A posteriori error estimation for discontinuous Galerkin finite element approximation. SIAM J. Numer. Anal. 45 (2007) 1777-1798 (electronic). | Zbl
,[2] A posteriori error estimation for lowest order Raviart-Thomas mixed finite elements. SIAM J. Sci. Comput. 30 (2009) 189-204. | Zbl
,[3] A Posterior Error Estimation in Finite Element Analysis. Wiley, New York, USA (2000). | Zbl
and ,[4] Unified analysis of discontinuous Galerkin methods for elliptic problems. SIAM J. Numer. Anal. 39 (2001) 1749-1779. | Zbl
, , and ,[5] Feedback and adaptive finite element solution of one-dimensional boundary value problems. Numer. Math. 44 (1984) 75-102. | EuDML | Zbl
and ,[6] Some a posteriori error estimators for elliptic partial differential equations. Math. Comput. 44 (1985) 283-301. | Zbl
and ,[7] Energy norm a posteriori error estimation for discontinuous Galerkin methods. Comput. Meth. Appl. Mech. Engrg. 192 (2003) 723-733. | Zbl
, and ,[8] Adaptive finite element methods with convergence rates. Numer. Math. 97 (2004) 219-268. | Zbl
, and ,[9] A posteriori error estimators based on equilibrated fluxes. CMAM (to appear). | Zbl
and ,[10] Equilibrated error estimators for discontinuous Galerkin methods. Numer. Meth. PDE 24 (2008) 1236-1252. | Zbl
and ,[11] Singularities of Maxwell interface problems. ESAIM: M2AN 33 (1999) 627-649. | Numdam | Zbl
, and ,[12] A convergent adaptive algorithm for Poisson's equation. SIAM J. Numer. Anal. 33 (1996) 1106-1124. | Zbl
,[13] A posteriori energy-norm error estimates for advection-diffusion equations approximated by weighted interior penalty methods. J. Comput. Math. 26 (2008) 488-510. | Zbl
and ,[14] An accurate H(div) flux reconstruction for discontinuous Galerkin approximations of elliptic problems. C. R. Math. Acad. Sci. Paris 345 (2007) 709-712. | Zbl
, and ,[15] A discontinuous Galerkin method with weighted averages for advection-diffusion equations with locally small and anisotropic diffusivity. IMA J. Numer. Anal. 29 (2009) 235-256. | Zbl
, and ,[16] Guaranteed and robust discontinuous galerkin a posteriori error estimates for convection-diffusion-reaction problems. JCAM (to appear). | Zbl
, and ,[17] Energy norm a posteriori error estimation for mixed discontinuous Galerkin approximations of the Maxwell operator. Comput. Meth. Appl. Mech. Engrg. 194 (2005) 499-510. | Zbl
, and ,[18] A posteriori error estimates for a discontinuous Galerkin approximation of second-order problems. SIAM J. Numer. Anal. 41 (2003) 2374-2399. | Zbl
and ,[19] Convergence of adaptive discontinuous Galerkin approximations of second-order elliptic problems. SIAM J. Numer. Anal. 45 (2007) 641-665 (electronic). | Zbl
and ,[20] A posteriori error analysis for locally conservative mixed methods. Math. Comp. 76 (2007) 43-66 (electronic). | Zbl
,[21] A posteriori error estimators for locally conservative methods of nonlinear elliptic problems. Appl. Numer. Math. 57 (2007) 1065-1080. | Zbl
,[22] Error estimate procedure in the finite element method and applications. SIAM J. Numer. Anal. 20 (1983) 485-509. | Zbl
and ,[23] Convergence of adaptive finite element methods for general second order linear elliptic PDEs. SIAM J. Numer. Anal. 43 (2005) 1803-1827 (electronic). | Zbl
and ,[24] Data oscillation and convergence of adaptive FEM. SIAM J. Numer. Anal. 38 (2000) 466-488 (electronic). | Zbl
, and ,[25] Convergence of adaptive finite element methods. SIAM Rev. 44 (2002) 631-658 (electronic). [Revised reprint of “Data oscillation and convergence of adaptive FEM”. SIAM J. Numer. Anal. 38 (2001) 466-488 (electronic).] | Zbl
, and ,[26] A posteriori error estimates for a discontinuous Galerkin method applied to elliptic problems. Comput. Math. Appl. 46 (2003) 141-163. | Zbl
and ,[27] A robust a-posteriori error estimator for discontinuous Galerkin methods for convection-diffusion equations. Appl. Numer. Math. 59 (2009) 2236-2255. | Zbl
and ,[28] A review of a posteriori error estimation and adaptive mesh-refinement techniques. Wiley-Teubner, Chichester-Stuttgart (1996). | Zbl
,Cited by Sources: