In the present work we introduce a new family of cell-centered Finite Volume schemes for anisotropic and heterogeneous diffusion operators inspired by the MPFA L method. A very general framework for the convergence study of finite volume methods is provided and then used to establish the convergence of the new method. Fairly general meshes are covered and a computable sufficient criterion for coercivity is provided. In order to guarantee consistency in the presence of heterogeneous diffusivity, we introduce a non-standard test space in (Ω) and prove its density. Thorough assessment on a set of anisotropic heterogeneous problems as well as a comparison with classical multi-point Finite Volume methods is provided.
Mots clés : finite volume methods, heterogeneous anisotropic diffusion, MPFA, convergence analysis
@article{M2AN_2010__44_4_597_0, author = {Ag\'elas, L\'eo and Di Pietro, Daniele A. and Droniou, J\'er\^ome}, title = {The {G} method for heterogeneous anisotropic diffusion on general meshes}, journal = {ESAIM: Mod\'elisation math\'ematique et analyse num\'erique}, pages = {597--625}, publisher = {EDP-Sciences}, volume = {44}, number = {4}, year = {2010}, doi = {10.1051/m2an/2010021}, mrnumber = {2683575}, zbl = {1202.65143}, language = {en}, url = {http://archive.numdam.org/articles/10.1051/m2an/2010021/} }
TY - JOUR AU - Agélas, Léo AU - Di Pietro, Daniele A. AU - Droniou, Jérôme TI - The G method for heterogeneous anisotropic diffusion on general meshes JO - ESAIM: Modélisation mathématique et analyse numérique PY - 2010 SP - 597 EP - 625 VL - 44 IS - 4 PB - EDP-Sciences UR - http://archive.numdam.org/articles/10.1051/m2an/2010021/ DO - 10.1051/m2an/2010021 LA - en ID - M2AN_2010__44_4_597_0 ER -
%0 Journal Article %A Agélas, Léo %A Di Pietro, Daniele A. %A Droniou, Jérôme %T The G method for heterogeneous anisotropic diffusion on general meshes %J ESAIM: Modélisation mathématique et analyse numérique %D 2010 %P 597-625 %V 44 %N 4 %I EDP-Sciences %U http://archive.numdam.org/articles/10.1051/m2an/2010021/ %R 10.1051/m2an/2010021 %G en %F M2AN_2010__44_4_597_0
Agélas, Léo; Di Pietro, Daniele A.; Droniou, Jérôme. The G method for heterogeneous anisotropic diffusion on general meshes. ESAIM: Modélisation mathématique et analyse numérique, Tome 44 (2010) no. 4, pp. 597-625. doi : 10.1051/m2an/2010021. http://archive.numdam.org/articles/10.1051/m2an/2010021/
[1] An introduction to multipoint flux approximations for quadrilateral grids. Comput. Geosci. 6 (2002) 405-432. | Zbl
,[2] Discretization on non-orthogonal, curvilinear grids for multi-phase flow, in Proc. of the 4th European Conf. on the Mathematics of Oil Recovery (Røros, Norway), Vol. D (1994).
, , and ,[3] A new finite volume approach to efficient discretization on challeging grids, in Proc. SPE 106435, Houston, USA (2005).
, , , and ,[4] Convergence of a symmetric MPFA method on quadrilateral grids. Comput. Geosci. 11 (2007) 333-345. | Zbl
, , , and ,[5] A compact multipoint flux approximation method with improved robustness. Numer. Methods Partial Differ. Equ. 24 (2008) 1329-1360. | Zbl
, , and ,[6] A symmetric finite volume scheme for anisotropic heterogeneous second-order elliptic problems, in Finite Volumes for Complex Applications, V.R. Eymard and J.-M. Hérard Eds., John Wiley & Sons (2008) 705-716.
and ,[7] Convergence of the finite volume MPFA O scheme for heterogeneous anisotropic diffusion problems on general meshes. C. R. Acad. Sci. Paris, Sér. I 346 (2008) 1007-1012. | Zbl
and ,[8] Convergence of finite volume MPFA O type schemes for heterogeneous anisotropic diffusion problems on general meshes. Preprint available at http://hal.archives-ouvertes.fr/hal-00340159/fr (2008). | Zbl
and ,[9] A symmetric and coercive finite volume scheme for multiphase porous media flow with applications in the oil industry, in Finite Volumes for Complex Applications, V.R. Eymard and J.-M. Hérard Eds., John Wiley & Sons (2008) 35-52.
, and ,[10] An abstract analysis framework for nonconforming approximations of diffusion problems on general meshes. IJFV 7 (2010) 1-29.
, , and ,[11] Efficient management of parallelism in object oriented numerical software libraries, in Modern Software Tools in Scientific Computing, E. Arge, A.M. Bruaset and H.P. Langtangen Eds., Birkhäuser Press (1997) 163-202. | Zbl
, , and ,[12] PETSc Web page (2001) www.mcs.anl.gov/petsc.
, , , , , , and ,[13] PETSc users manual. Tech. Report ANL-95/11 - Revision 2.1.5, Argonne National Laboratory (2004).
, , , , , , , and ,[14] Convergence of mimetic finite difference methods for diffusion problems on polyhedral meshes. SIAM J. Numer. Anal. 45 (2005) 1872-1896. | Zbl
, and ,[15] A family of mimetic finite difference methods on polygonal and polyhedral meshes. Math. Mod. Meths. Appli. Sci. 15 (2005) 1533-1553. | Zbl
, and ,[16] Convergence of mimetic finite difference methods for diffusion problems on polyhedral meshes with curved faces. Math. Mod. Meths. Appli. Sci. 26 (2006) 275-298. | Zbl
, and ,[17] Discrete functional analysis tools for discontinuous Galerkin methods with application to the incompressible Navier-Stokes equations. Math. Comp. (2010), preprint available at http://hal.archives-ouvertes.fr/hal-00278925/fr/. | Zbl
and ,[18] A density result in Sobolev spaces. J. Math. Pures Appl. 81 (2002) 697-714. | Zbl
,[19] A mixed finite volume scheme for anisotropic diffusion problems on any grid. Numer. Math. 105 (2006) 35-71. | Zbl
and ,[20] A unified approach to Mimetic Finite Difference, Hybrid Finite Volume and Mixed Finite Volume methods. Maths. Models Methods Appl. Sci. 20 (2010) 1-31. | Zbl
, , and ,[21] A flux continuous scheme for the full tensor pressure equation, in Proc. of the 4th European Conf. on the Mathematics of Oil Recovery (Røros, Norway), Vol. D (1994).
and ,[22] The finite volume method, Ph.G. Charlet and J.-L. Lions Eds., North Holland (2000). | Zbl
, and ,[23] Convergence analysis of a colocated finite volume scheme for the incompressible Navier-Stokes equations on general 2D or 3D meshes. SIAM J. Numer. Anal. 45 (2007) 1-36. | Zbl
, and ,[24] Discretization of heterogeneous and anisotropic diffusion problems on general non-conforming meshes. SUSHI: a scheme using stabilization and hybrid interfaces. IMA J. Numer. Anal. (2009) doi: 10.1093/imanum/drn084. | Zbl
, and ,[25] Equivalence between lowest-order mixed finite element and multi-point finite volume methods on simplicial meshes. ESAIM: M2AN 40 (2006) 367-391. | EuDML | Numdam | Zbl
,Cité par Sources :