The dynamics of dendritic growth of a crystal in an undercooled melt is determined by macroscopic diffusion-convection of heat and by capillary forces acting on the nanometer scale of the solid-liquid interface width. Its modelling is useful for instance in processing techniques based on casting. The phase-field method is widely used to study evolution of such microstructural phase transformations on a continuum level; it couples the energy equation to a phenomenological Allen-Cahn/Ginzburg-Landau equation modelling the dynamics of an order parameter determining the solid and liquid phases, including also stochastic fluctuations to obtain the qualitatively correct result of dendritic side branching. This work presents a method to determine stochastic phase-field models from atomistic formulations by coarse-graining molecular dynamics. It has three steps: (1) a precise quantitative atomistic definition of the phase-field variable, based on the local potential energy; (2) derivation of its coarse-grained dynamics model, from microscopic Smoluchowski molecular dynamics (that is brownian or over damped Langevin dynamics); and (3) numerical computation of the coarse-grained model functions. The coarse-grained model approximates Gibbs ensemble averages of the atomistic phase-field, by choosing coarse-grained drift and diffusion functions that minimize the approximation error of observables in this ensemble average.
Mots-clés : phase-field, molecular dynamics, coarse graining, Smoluchowski dynamics, stochastic differential equation
@article{M2AN_2010__44_4_627_0, author = {von Schwerin, Erik and Szepessy, Anders}, title = {A stochastic phase-field model determined from molecular dynamics}, journal = {ESAIM: Mod\'elisation math\'ematique et analyse num\'erique}, pages = {627--646}, publisher = {EDP-Sciences}, volume = {44}, number = {4}, year = {2010}, doi = {10.1051/m2an/2010022}, mrnumber = {2683576}, zbl = {1193.82052}, language = {en}, url = {http://archive.numdam.org/articles/10.1051/m2an/2010022/} }
TY - JOUR AU - von Schwerin, Erik AU - Szepessy, Anders TI - A stochastic phase-field model determined from molecular dynamics JO - ESAIM: Modélisation mathématique et analyse numérique PY - 2010 SP - 627 EP - 646 VL - 44 IS - 4 PB - EDP-Sciences UR - http://archive.numdam.org/articles/10.1051/m2an/2010022/ DO - 10.1051/m2an/2010022 LA - en ID - M2AN_2010__44_4_627_0 ER -
%0 Journal Article %A von Schwerin, Erik %A Szepessy, Anders %T A stochastic phase-field model determined from molecular dynamics %J ESAIM: Modélisation mathématique et analyse numérique %D 2010 %P 627-646 %V 44 %N 4 %I EDP-Sciences %U http://archive.numdam.org/articles/10.1051/m2an/2010022/ %R 10.1051/m2an/2010022 %G en %F M2AN_2010__44_4_627_0
von Schwerin, Erik; Szepessy, Anders. A stochastic phase-field model determined from molecular dynamics. ESAIM: Modélisation mathématique et analyse numérique, Tome 44 (2010) no. 4, pp. 627-646. doi : 10.1051/m2an/2010022. http://archive.numdam.org/articles/10.1051/m2an/2010022/
[1] Semi sharp phase-field method for quantitative phase change simulations. Phys. Rev. Lett. 91 (2003) 265505-265509.
,[2] Solidification microstructures and solid-state parallels: Recent developments, future directions. Acta Mater. 57 (2009) 941-971.
, , , , , , , and ,[3] Vortex methods. I. Convergence in three dimensions. Math. Comp. 39 (1982) 1-27. | Zbl
and ,[4] Phase field simulation of solidification. Ann. Rev. Mater. Res. 32 (2002) 163-194.
, , and ,[5] Existence of solutions to an anisotropic phase-field model. Math. Methods Appl. Sci. 26 (2003) 1137-1160. | Zbl
and ,[6] Theoretical and numerical comparison of some sampling methods for molecular dynamics. ESAIM: M2AN 41 (2007) 351-389. | Numdam | Zbl
, and ,[7] Glauber evolution with the Kac potentials. I. Mesoscopic and macroscopic limits, interface dynamics. Nonlinearity 7 (1994) 633-696. | Zbl
, , and ,[8] W. E and W. Ren, Heterogeneous multiscale method for the modeling of complex fluids and micro-fluidics. J. Comput. Phys. 204 (2005) 1-26. | Zbl
[9] Understanding Molecular Simulation. Academic Press (2002). | Zbl
and ,[10] Stochastic Differential Equations: Models and Numerics. http://www.math.kth.se/~szepessy/sdepde.pdf.
, , , and ,[11] Formulas for determining local properties in molecular dynamics: shock waves. J. Chem. Phys. 76 (1982) 622-628.
,[12] Atomistic and continuum modeling of dendritic solidification. Mat. Sci. Eng. R 41 (2003) 121-163.
, and ,[13] The statistical mechanical theory of transport processes. IV. The equations of hydrodynamics. J. Chem. Phys. 18 (1950) 817-829.
and ,[14] Statistical physics: statics, dynamics and renormalization. World Scientific (2000). | Zbl
,[15] Phase-field model of dendritic side branching with thermal noise. Phys Rev. E 60 (1999) 3614-3625.
and ,[16] Stochastic hydrodynamical limits of particle systems. Comm. Math. Sciences 4 (2006) 513-549. | Zbl
and ,[17] Stochastic mode reduction for particle-based simulation methods for complex microfluid systems. SIAM J. Appl. Math. 64 (2003) 401-422. | Zbl
and ,[18] Thermal Physics. W.H. Freeman Company (1980).
and ,[19] Statistical Physics Part 1. Pergamon Press (1980). | JFM | Zbl
and ,[20] Interacting particle systems. Springer-Verlag, Berlin (2005). | Zbl
,[21] A particle method for first-order symmetric systems. Numer. Math. 51 (1987) 323-352. | Zbl
and ,[22] Statistical Mechanics: An Intermediate Course. World Scientific Publishing (2001). | Zbl
, and ,[23] Dynamical Theories of Brownian Motion. Princeton University Press (1967). | Zbl
,[24] Forces due to fluctuations in the anisotropic phase-field model of solidification. Physica A 268 (1999) 283-290.
and ,[25] Molecular modeling and simulation. Springer-Verlag (2002). | Zbl
,[26] Convergence of the phase-field equations to the Mullins-Sekerka Problem with kinetic undercooling. Arch. Rat. Mech. Anal. 131 (1995) 139-197. | Zbl
,[27] Adaptive weak approximation of stochastic differential equations. Comm. Pure Appl. Math. 54 (2001) 1169-1214. | Zbl
, and ,[28] Stochastic Processes in Physics and Chemistry. North-Holland (1981). | Zbl
,[29] A Stochastic Phase-Field Model Computed From Coarse-Grained Molecular Dynamics. arXiv:0908.1367, included in [30].
,[30] Adaptivity for Stochastic and Partial Differential Equations with Applications th Phase Transformations. Ph.D. Thesis, KTH, Royal Institute of Technology, Stockholm, Sweden (2007).
,Cité par Sources :