Probabilistic methods for semilinear partial differential equations. Applications to finance
ESAIM: Modélisation mathématique et analyse numérique, Special Issue on Probabilistic methods and their applications, Tome 44 (2010) no. 5, pp. 1107-1133.

With the pioneering work of [Pardoux and Peng, Syst. Contr. Lett. 14 (1990) 55-61; Pardoux and Peng, Lecture Notes in Control and Information Sciences 176 (1992) 200-217]. We have at our disposal stochastic processes which solve the so-called backward stochastic differential equations. These processes provide us with a Feynman-Kac representation for the solutions of a class of nonlinear partial differential equations (PDEs) which appear in many applications in the field of Mathematical Finance. Therefore there is a great interest among both practitioners and theoreticians to develop reliable numerical methods for their numerical resolution. In this survey, we present a number of probabilistic methods for approximating solutions of semilinear PDEs all based on the corresponding Feynman-Kac representation. We also include a general introduction to backward stochastic differential equations and their connection with PDEs and provide a generic framework that accommodates existing probabilistic algorithms and facilitates the construction of new ones.

DOI : 10.1051/m2an/2010054
Classification : 65C30, 65C05, 60H07, 62G08
Mots-clés : probabilistic methods, semilinear PDEs, BSDEs, Monte Carlo methods, Malliavin calculus, cubature methods
@article{M2AN_2010__44_5_1107_0,
     author = {Crisan, Dan and Manolarakis, Konstantinos},
     title = {Probabilistic methods for semilinear partial differential equations. {Applications} to finance},
     journal = {ESAIM: Mod\'elisation math\'ematique et analyse num\'erique},
     pages = {1107--1133},
     publisher = {EDP-Sciences},
     volume = {44},
     number = {5},
     year = {2010},
     doi = {10.1051/m2an/2010054},
     mrnumber = {2731405},
     language = {en},
     url = {http://archive.numdam.org/articles/10.1051/m2an/2010054/}
}
TY  - JOUR
AU  - Crisan, Dan
AU  - Manolarakis, Konstantinos
TI  - Probabilistic methods for semilinear partial differential equations. Applications to finance
JO  - ESAIM: Modélisation mathématique et analyse numérique
PY  - 2010
SP  - 1107
EP  - 1133
VL  - 44
IS  - 5
PB  - EDP-Sciences
UR  - http://archive.numdam.org/articles/10.1051/m2an/2010054/
DO  - 10.1051/m2an/2010054
LA  - en
ID  - M2AN_2010__44_5_1107_0
ER  - 
%0 Journal Article
%A Crisan, Dan
%A Manolarakis, Konstantinos
%T Probabilistic methods for semilinear partial differential equations. Applications to finance
%J ESAIM: Modélisation mathématique et analyse numérique
%D 2010
%P 1107-1133
%V 44
%N 5
%I EDP-Sciences
%U http://archive.numdam.org/articles/10.1051/m2an/2010054/
%R 10.1051/m2an/2010054
%G en
%F M2AN_2010__44_5_1107_0
Crisan, Dan; Manolarakis, Konstantinos. Probabilistic methods for semilinear partial differential equations. Applications to finance. ESAIM: Modélisation mathématique et analyse numérique, Special Issue on Probabilistic methods and their applications, Tome 44 (2010) no. 5, pp. 1107-1133. doi : 10.1051/m2an/2010054. http://archive.numdam.org/articles/10.1051/m2an/2010054/

[1] V. Bally and G. Pagès, Error analysis of the quantization algorithm for obstacle problems. Stochastic Processes their Appl. 106 (2003) 1-40. | Zbl

[2] V. Bally and G. Pagès, A quantization algorithm for solving multi dimensional discrete-time optional stopping problems. Bernoulli 6 (2003) 1003-1049. | Zbl

[3] D. Becherer, Bounded solutions to backward SDE's with jumps for utility optimization and indifference pricing. Ann. Appl. Prob. 16 (2006) 2027-2054. | Zbl

[4] J.M. Bismut, Théorie probabiliste du contrôle des diffusions, Mem. Amer. Math. Soc. 176. Providence, Rhode Island (1973). | Zbl

[5] B. Bouchard and N. Touzi, Discrete time approximation and Monte Carlo simulation for Backward Stochastic Differential Equations. Stochastic Processes their Appl. 111 (2004) 175-206. | Zbl

[6] B. Bouchard, I. Ekeland and N. Touzi, On the Malliavin approach to Monte Carlo methods of conditional expectations. Financ. Stoch. 8 (2004) 45-71. | Zbl

[7] P. Briand and Y. Hu, BSDE with quadratic growth and unbounded terminal value. Probab. Theor. Relat. Fields 136 (2006) 604-618. | Zbl

[8] K.-T. Chen, Integration of paths, geometric invariants and a generalized Baker-Hausdorff formula. Ann. Math. 65 (1957) 163-178. | Zbl

[9] P. Cheridito, M. Soner, N. Touzi and N. Victoir, Second-order backward stochastic differential equations and fully non linear parabolic pdes. Commun. Pure Appl. Math. 60 (2007) 1081-1110. | Zbl

[10] D. Crisan and K. Manolarakis, Numerical solution for a BSDE using the Cubature method. Preprint available at http://www2.imperial.ac.uk/ dcrisan/ (2007).

[11] D. Crisan, K. Manolarakis and N. Touzi, On the Monte Carlo simulation of BSDEs: An improvement on the Malliavin weights. Stochastic Processes their Appl. 120 (2010) 1133-1158. | Zbl

[12] J. Cvitanic and I. Karatzas, Hedging contingent claims with constrained portfolios. Ann. Appl. Prob. 3 (1993) 652-681. | Zbl

[13] D. Duffy and L. Epstein, Asset pricing with stochastic differential utility. Rev. Financ. Stud. 5 (1992) 411-436.

[14] D. Duffy and L. Epstein, Stochastic differential utility. Econometrica 60 (1992) 353-394. | Zbl

[15] N. El Karoui and S.J. Huang, A general result of existence and uniqueness of backward stochastic differential equations, in Backward Stochastic Differential Equations, N. El Karoui and L. Mazliak Eds., Longman (1996). | Zbl

[16] N. El Karoui and M. Quenez, Dynamic programming and pricing of contigent claims in incomplete markets. SIAM J. Contr. Opt. 33 (1995) 29-66. | Zbl

[17] N. El Karoui and M. Quenez, Non linear pricing theory and Backward Stochastic Differential Equations, in Financial Mathematics 1656, Springer (1995) 191-246. | Zbl

[18] N. El Karoui, C. Kapoudjan, E. Pardoux, S. Peng and M.C. Quenez, Reflected solutions of backward SDEs and related obstacle problems. Annals Probab. 25 (1997) 702-737. | Zbl

[19] N. El Karoui, E. Pardoux and M. Quenez, Reflected backward SDEs and American Options, in Numerical Methods in Finance, Chris Rogers and Denis Talay Eds., Cambridge University Press, Cambridge (1997). | Zbl

[20] N. El Karoui, S. Peng and M. Quenez, Backward Stochastic Differential Equations in finance. Mathematical Finance 7 (1997) 1-71. | Zbl

[21] R. Feynman, Space-time approach to non-relativistic quantum mechanics. Rev. Mod. Phys. 20 (1948) 367-387.

[22] H. Föllmer and A. Schied, Convex measures of risk and trading constraints. Financ. Stoch. 6 (2002) 429-447. | Zbl

[23] P. Friz and N. Victoir, Multidimensional Stochastic Processes as Rough Paths: Theory and applications. Cambridge studies in advanced mathematics, Cambridge University Press, Cambridge (2010). | Zbl

[24] E. Gobet and C. Labart, Error expansion for the discretization of Backward Stochastic Differential Equations. Stochastic Processes their Appl. 117 (2007) 803-829. | Zbl

[25] E. Gobet, J.P. Lemor and X. Warin, A regression based Monte Carlo method to solve Backward Stochastic Differential Equations. Ann. Appl. Prob. 15 (2005) 2172-2202. | Zbl

[26] E. Gobet, J.P. Lemor and X. Warin, Rate of convergence of an empirical regression method for solving generalized backward stochastic differential equations. Bernoulli 12 (2006) 889-916. | Zbl

[27] E. Jouini and H. Kallal, Arbitrage in securities markets with short sales constraints. Mathematical Finance 5 (1995) 178-197. | Zbl

[28] M. Kac, On distributions of certain Wiener functionals. Trans. Amer. Math. Soc. 65 (1949) 1-13. | Zbl

[29] I. Karatzas and S. Schreve, Brownian Motion and Stochastic Calculus. Springer Verlag, New York (1991). | Zbl

[30] M. Kobylanski, Backward Stochastic Differential Equations and Partial Differential Equations. Ann. Appl. Prob. 28 (2000) 558-602. | Zbl

[31] J.-P. Lepeltier and J. San Martin, Backward Stochastic Differential Equations with continuous coefficients. Stat. Probab. Lett. 32 (1997) 425-430. | Zbl

[32] F. Longstaff and E.S. Schwartz, Valuing American options by simulation: a simple least squares approach. Rev. Financ. Stud. 14 (2001) 113-147.

[33] T. Lyons and Z. Qian, System Control and Rough Paths. Oxford Science publication, Oxford University Press, Oxford (2002). | Zbl

[34] T. Lyons and N. Victoir, Cubature on Wiener space. Proc. Royal Soc. London 468 (2004) 169-198. | Zbl

[35] T. Lyons, M. Caruana and T. Levy, Differential Equations Driven by Rough Paths, Lecture Notes in Mathematics 1908. Springer (2004). | Zbl

[36] J. Ma and J. Zhang, Representation theorems for Backward Stochastic Differential Equations. Ann. Appl. Prob. 12 (2002) 1390-1418. | Zbl

[37] J. Ma and J. Zhang, Representation and regularities for solutions to BSDEs with reflections. Stochastic Processes their Appl. 115 (2005) 539-569. | Zbl

[38] J. Ma, P. Protter and J. Yong, Solving Forward-Backward SDEs expicitly - A four step scheme. Probab. Theor. Relat. Fields 122 (1994) 163-190.

[39] D. Nualart, The Malliavin calculus and related topics. Springer-Verlag (1996). | Zbl

[40] E. Pardoux and S. Peng, Adapted solution to Backward Stochastic Differential Equations. Syst. Contr. Lett. 14 (1990) 55-61. | Zbl

[41] E. Pardoux and S. Peng, Backward Stochastic Differential Equations and quasi linear parabolic partial differential equations, in Lecture Notes in Control and Information Sciences 176, Springer, Berlin/Heidelberg (1992) 200-217. | Zbl

[42] E. Pardoux and S. Tang, Forward-backward stochastic differential equations and quasilinear parabolic PDEs. Probab. Theor. Relat. Fields 114 (1999) 123-150. | Zbl

[43] S. Peng, Backward SDEs and related g-expectations, in Pitman Research Notes in Mathematics Series 364, Longman, Harlow (1997) 141-159. | Zbl

[44] S. Peng, Non linear expectations non linear evaluations and risk measures 1856. Springer-Verlag (2004).

[45] S. Peng, Modelling derivatives pricing mechanisms with their generating functions. Preprint, arxiv:math/0605599v1 (2006).

[46] E. Rosazza Giannin, Risk measures via g expectations. Insur. Math. Econ. 39 (2006) 19-34. | Zbl

[47] S. Tang and X. Li, Necessary conditions for optimal control of stochastic systems with random jumps. SIAM J. Contr. Opt. 32 (1994) 1447-1475. | Zbl

[48] J. Zhang, Some fine properties of backward stochastic differential equations. Ph.D. Thesis, Purdue University, USA (2001).

[49] J. Zhang, A numerical scheme for BSDEs. Ann. Appl. Prob. 14 (2004) 459-488. | Zbl

Cité par Sources :