Elliptic equations of higher stochastic order
ESAIM: Modélisation mathématique et analyse numérique, Special Issue on Probabilistic methods and their applications, Tome 44 (2010) no. 5, pp. 1135-1153.

This paper discusses analytical and numerical issues related to elliptic equations with random coefficients which are generally nonlinear functions of white noise. Singularity issues are avoided by using the Itô-Skorohod calculus to interpret the interactions between the coefficients and the solution. The solution is constructed by means of the Wiener Chaos (Cameron-Martin) expansions. The existence and uniqueness of the solutions are established under rather weak assumptions, the main of which requires only that the expectation of the highest order (differential) operator is a non-degenerate elliptic operator. The deterministic coefficients of the Wiener Chaos expansion of the solution solve a lower-triangular system of linear elliptic equations (the propagator). This structure of the propagator insures linear complexity of the related numerical algorithms. Using the lower triangular structure and linearity of the propagator, the rate of convergence is derived for a spectral/hp finite element approximation. The results of related numerical experiments are presented.

DOI : 10.1051/m2an/2010055
Classification : 35R60, 65L60, 60H15, 60H35
Mots-clés : elliptic PDE, random coefficients, Wiener chaos, spectral finite elements
@article{M2AN_2010__44_5_1135_0,
     author = {Lototsky, Sergey V. and Rozovskii, Boris L. and Wan, Xiaoliang},
     title = {Elliptic equations of higher stochastic order},
     journal = {ESAIM: Mod\'elisation math\'ematique et analyse num\'erique},
     pages = {1135--1153},
     publisher = {EDP-Sciences},
     volume = {44},
     number = {5},
     year = {2010},
     doi = {10.1051/m2an/2010055},
     mrnumber = {2731406},
     zbl = {1203.65020},
     language = {en},
     url = {http://archive.numdam.org/articles/10.1051/m2an/2010055/}
}
TY  - JOUR
AU  - Lototsky, Sergey V.
AU  - Rozovskii, Boris L.
AU  - Wan, Xiaoliang
TI  - Elliptic equations of higher stochastic order
JO  - ESAIM: Modélisation mathématique et analyse numérique
PY  - 2010
SP  - 1135
EP  - 1153
VL  - 44
IS  - 5
PB  - EDP-Sciences
UR  - http://archive.numdam.org/articles/10.1051/m2an/2010055/
DO  - 10.1051/m2an/2010055
LA  - en
ID  - M2AN_2010__44_5_1135_0
ER  - 
%0 Journal Article
%A Lototsky, Sergey V.
%A Rozovskii, Boris L.
%A Wan, Xiaoliang
%T Elliptic equations of higher stochastic order
%J ESAIM: Modélisation mathématique et analyse numérique
%D 2010
%P 1135-1153
%V 44
%N 5
%I EDP-Sciences
%U http://archive.numdam.org/articles/10.1051/m2an/2010055/
%R 10.1051/m2an/2010055
%G en
%F M2AN_2010__44_5_1135_0
Lototsky, Sergey V.; Rozovskii, Boris L.; Wan, Xiaoliang. Elliptic equations of higher stochastic order. ESAIM: Modélisation mathématique et analyse numérique, Special Issue on Probabilistic methods and their applications, Tome 44 (2010) no. 5, pp. 1135-1153. doi : 10.1051/m2an/2010055. http://archive.numdam.org/articles/10.1051/m2an/2010055/

[1] I. Babuška and M. Suri, The p and h-p versions of the finite element method, basic principles and properties. SIAM Rev. 36 (1994) 578-632. | Zbl

[2] I. Babuška, R. Tempone and G.E. Zouraris, Galerkin finite element approximations of stochastic elliptic partial differential equations. SIAM J. Numer. Anal. 42 (2004) 800-825. | Zbl

[3] R.H. Cameron and W.T. Martin, The orthogonal development of nonlinear functionals in a series of Fourier-Hermite functions. Ann. Math. 48 (1947) 385-392. | Zbl

[4] Y. Cao, On convergence rate of Wiener-Ito expansion for generalized random variables. Stochastics 78 (2006) 179-187. | Zbl

[5] P.G. Ciarlet, The finite element method for elliptic problems, Classics in Applied Mathematics 40. Society for Industrial and Applied Mathematics (SIAM), Philadelphia (2002). | Zbl

[6] F.W. Elliott, Jr., D.J. Horntrop and A.J. Majda, A Fourier-wavelet Monte Carlo method for fractal random fields. J. Comput. Phys. 132 (1997) 384-408. | Zbl

[7] T. Hida, H.-H. Kuo, J. Potthoff and L. Sreit, White noise. Kluwer Academic Publishers, Boston (1993). | Zbl

[8] H. Holden, B. Øksendal, J. Ubøe and T. Zhang, Stochastic partial differential equations. Birkhäuser, Boston (1996). | Zbl

[9] K. Itô, Stochastic integral. Proc. Imp. Acad. Tokyo 20 (1944) 519-524. | Zbl

[10] G.E. Karniadakis and S.J. Sherwin, Spectral/hp element methods for computational fluid dynamics. Second edition, Numerical Mathematics and Scientific Computation, Oxford University Press, New York (2005). | Zbl

[11] Yu.G. Kondratiev, P. Leukert, J. Potthoff, L. Streit and W. Westerkamp, Generalized functionals in Gaussian spaces: the characterization theorem revisited. J. Funct. Anal. 141 (1996) 301-318. | Zbl

[12] H.-H. Kuo, White noise distribution theory. Probability and Stochastics Series, CRC Press, Boca Raton (1996). | Zbl

[13] M. Loève, Probability theory - I, Graduate Texts in Mathematics 45. Fourth edition, Springer-Verlag, New York (1977). | Zbl

[14] S.V. Lototsky and B.L. Rozovskii, Stochastic differential equations driven by purely spatial noise. SIAM J. Math. Anal. 41 (2009) 1295-1322. | Zbl

[15] D. Nualart, The Malliavin calculus and related topics. Second edition, Probability and its Applications (New York), Springer-Verlag, Berlin (2006). | Zbl

[16] S. Pilipović and D. Seleši, Expansion theorems for generalized random processes, Wick products and applications to stochastic differential equations. Infin. Dimens. Anal. Quantum Probab. Relat. Top. 10 (2007) 79-110. | Zbl

[17] S. Pilipović and D. Seleši, On the generalized stochastic Dirichlet problem. Part I: The stochastic weak maximum principle. Potential Anal. 32 (2010) 363-387. | Zbl

[18] Ch. Schwab, p- and hp-finite element methods, Theory and applications in solid and fluid mechanics. Numerical Mathematics and Scientific Computation, Oxford University Press, New York (1998). | Zbl

[19] M. Shinozuka and G. Deodatis, Simulation of stochastic processes by spectral representation. AMR 44 (1991) 191-204.

[20] T.G. Theting, Solving Wick-stochastic boundary value problems using a finite element method. Stochastics Stochastics Rep. 70 (2000) 241-270. | Zbl

[21] G. Våge, Variational methods for PDEs applied to stochastic partial differential equations. Math. Scand. 82 (1998) 113-137. | Zbl

[22] X. Wan, B. Rozovskii and G.E. Karniadakis, A stochastic modeling methodology based on weighted Wiener chaos and Malliavin calculus. Proc. Natl. Acad. Sci. USA 106 (2009) 14189-14194. | Zbl

Cité par Sources :