Discontinuous Galerkin methods for problems with Dirac delta source
ESAIM: Mathematical Modelling and Numerical Analysis , Tome 46 (2012) no. 6, pp. 1467-1483.

In this article we study discontinuous Galerkin finite element discretizations of linear second-order elliptic partial differential equations with Dirac delta right-hand side. In particular, assuming that the underlying computational mesh is quasi-uniform, we derive an a priori bound on the error measured in terms of the L2-norm. Additionally, we develop residual-based a posteriori error estimators that can be used within an adaptive mesh refinement framework. Numerical examples for the symmetric interior penalty scheme are presented which confirm the theoretical results.

DOI : 10.1051/m2an/2012010
Classification : 65N30
Mots-clés : elliptic pdes, discontinuous Galerkin methods, Dirac delta source
@article{M2AN_2012__46_6_1467_0,
     author = {Houston, Paul and Wihler, Thomas Pascal},
     title = {Discontinuous {Galerkin} methods for problems with {Dirac} delta source},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis },
     pages = {1467--1483},
     publisher = {EDP-Sciences},
     volume = {46},
     number = {6},
     year = {2012},
     doi = {10.1051/m2an/2012010},
     mrnumber = {2996336},
     zbl = {1272.65092},
     language = {en},
     url = {http://archive.numdam.org/articles/10.1051/m2an/2012010/}
}
TY  - JOUR
AU  - Houston, Paul
AU  - Wihler, Thomas Pascal
TI  - Discontinuous Galerkin methods for problems with Dirac delta source
JO  - ESAIM: Mathematical Modelling and Numerical Analysis 
PY  - 2012
SP  - 1467
EP  - 1483
VL  - 46
IS  - 6
PB  - EDP-Sciences
UR  - http://archive.numdam.org/articles/10.1051/m2an/2012010/
DO  - 10.1051/m2an/2012010
LA  - en
ID  - M2AN_2012__46_6_1467_0
ER  - 
%0 Journal Article
%A Houston, Paul
%A Wihler, Thomas Pascal
%T Discontinuous Galerkin methods for problems with Dirac delta source
%J ESAIM: Mathematical Modelling and Numerical Analysis 
%D 2012
%P 1467-1483
%V 46
%N 6
%I EDP-Sciences
%U http://archive.numdam.org/articles/10.1051/m2an/2012010/
%R 10.1051/m2an/2012010
%G en
%F M2AN_2012__46_6_1467_0
Houston, Paul; Wihler, Thomas Pascal. Discontinuous Galerkin methods for problems with Dirac delta source. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 46 (2012) no. 6, pp. 1467-1483. doi : 10.1051/m2an/2012010. http://archive.numdam.org/articles/10.1051/m2an/2012010/

[1] R.A. Adams and J.J.F. Fournier, Sobolev Spaces. Elsevier (2003). | MR | Zbl

[2] T. Apel, O. Benedix, D. Sirch and B. Vexler, A priori mesh grading for an elliptic problem with Dirac right-hand side. SIAM J. Numer. Anal. 49 (2011) 992-1005. | MR | Zbl

[3] R. Araya, E. Behrens and R. Rodríguez. A posteriori error estimates for elliptic problems with Dirac delta source terms. Numer. Math. 105 (2006) 193-216. | MR | Zbl

[4] D.N. Arnold, An interior penalty finite element method with discontinuous elements. SIAM J. Numer. Anal. 19 (1982) 742-760. | MR | Zbl

[5] D.N. Arnold, F. Brezzi, B. Cockburn and L.D. Marini, Unified analysis of discontinuous Galerkin methods for elliptic problems. SIAM J. Numer. Anal. 39 (2001) 1749-1779. | MR | Zbl

[6] R. Becker and R. Rannacher, An optimal control approach to a-posteriori error estimation in finite element methods, edited by A. Iserles. Cambridge University Press. Acta Numerica (2001) 1-102. | MR | Zbl

[7] E. Casas, L2 estimates for the finite element method for the Dirichlet problem with singular data. Numer. Math. 47 (1985) 627-632. | EuDML | MR | Zbl

[8] M. Dauge, Elliptic Boundary Value Problems on Corner Domains. Lect. Notes Math. 1341 (1988). | MR | Zbl

[9] J. Douglas and T. Dupont, Interior penalty procedures for elliptic and parabolic Galerkin methods, in Computing methods in applied sciences (Second Internat. Sympos., Versailles, 1975). Lect. Notes Phys. 58 (1976) 207-216. | MR

[10] K. Eriksson, D. Estep, P. Hansbo and C. Johnson, Introduction to adaptive methods for differential equations, edited by A. Iserles. Cambridge University Press. Acta Numerica (1995) 105-158. | MR | Zbl

[11] P. Grisvard, Elliptic Problems in Nonsmooth Domains. Pitman (1985). | MR | Zbl

[12] P. Houston and E. Süli, Adaptive finite element approximation of hyperbolic problems, in Error Estimation and Adaptive Discretization Methods in Computational Fluid Dynamics, edited by T. Barth and H. Deconinck. Lect. Notes Comput. Sci. Eng. 25 (2002). | Zbl

[13] P. Houston and T.P. Wihler, Second-order elliptic PDE with discontinuous boundary data. IMA J. Numer. Anal. 32 (2012) 48-74. | MR | Zbl

[14] V. John, A posteriori L2-error estimates for the nonconforming P1/P0-finite element discretization of the Stokes equations. J. Comput. Appl. Math. 96 (1998) 99-116. | MR | Zbl

[15] B. Rivière, Discontinuous Galerkin Methods for Solving Elliptic and Parabolic Equations, Theory and Implementation, in Front. Appl. Math. SIAM (2008). | Zbl

[16] B. Rivière, M.F. Wheeler and V. Girault, A priori error estimates for finite element methods based on discontinuous approximation spaces for elliptic problems. SIAM J. Numer. Anal. 39 (2001) 902-931 (electronic). | MR | Zbl

[17] R. Scott, Finite element convergence for singular data. Numer. Math. 21 (1973/1974) 317-327. | MR | Zbl

[18] M.F. Wheeler, An elliptic collocation finite element method with interior penalties. SIAM J. Numer. Anal. 15 (1978) 152-161. | MR | Zbl

[19] T.P. Wihler and B. Rivière, Discontinuous Galerkin methods for second-order elliptic PDE with low-regularity solutions. J. Sci. Comput. 46 (2011) 151-165. | MR | Zbl

Cité par Sources :