In this article we study discontinuous Galerkin finite element discretizations of linear second-order elliptic partial differential equations with Dirac delta right-hand side. In particular, assuming that the underlying computational mesh is quasi-uniform, we derive an a priori bound on the error measured in terms of the L2-norm. Additionally, we develop residual-based a posteriori error estimators that can be used within an adaptive mesh refinement framework. Numerical examples for the symmetric interior penalty scheme are presented which confirm the theoretical results.
Mots-clés : elliptic pdes, discontinuous Galerkin methods, Dirac delta source
@article{M2AN_2012__46_6_1467_0, author = {Houston, Paul and Wihler, Thomas Pascal}, title = {Discontinuous {Galerkin} methods for problems with {Dirac} delta source}, journal = {ESAIM: Mathematical Modelling and Numerical Analysis }, pages = {1467--1483}, publisher = {EDP-Sciences}, volume = {46}, number = {6}, year = {2012}, doi = {10.1051/m2an/2012010}, mrnumber = {2996336}, zbl = {1272.65092}, language = {en}, url = {http://archive.numdam.org/articles/10.1051/m2an/2012010/} }
TY - JOUR AU - Houston, Paul AU - Wihler, Thomas Pascal TI - Discontinuous Galerkin methods for problems with Dirac delta source JO - ESAIM: Mathematical Modelling and Numerical Analysis PY - 2012 SP - 1467 EP - 1483 VL - 46 IS - 6 PB - EDP-Sciences UR - http://archive.numdam.org/articles/10.1051/m2an/2012010/ DO - 10.1051/m2an/2012010 LA - en ID - M2AN_2012__46_6_1467_0 ER -
%0 Journal Article %A Houston, Paul %A Wihler, Thomas Pascal %T Discontinuous Galerkin methods for problems with Dirac delta source %J ESAIM: Mathematical Modelling and Numerical Analysis %D 2012 %P 1467-1483 %V 46 %N 6 %I EDP-Sciences %U http://archive.numdam.org/articles/10.1051/m2an/2012010/ %R 10.1051/m2an/2012010 %G en %F M2AN_2012__46_6_1467_0
Houston, Paul; Wihler, Thomas Pascal. Discontinuous Galerkin methods for problems with Dirac delta source. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 46 (2012) no. 6, pp. 1467-1483. doi : 10.1051/m2an/2012010. http://archive.numdam.org/articles/10.1051/m2an/2012010/
[1] Sobolev Spaces. Elsevier (2003). | MR | Zbl
and ,[2] A priori mesh grading for an elliptic problem with Dirac right-hand side. SIAM J. Numer. Anal. 49 (2011) 992-1005. | MR | Zbl
, , and ,[3] A posteriori error estimates for elliptic problems with Dirac delta source terms. Numer. Math. 105 (2006) 193-216. | MR | Zbl
, and .[4] An interior penalty finite element method with discontinuous elements. SIAM J. Numer. Anal. 19 (1982) 742-760. | MR | Zbl
,[5] Unified analysis of discontinuous Galerkin methods for elliptic problems. SIAM J. Numer. Anal. 39 (2001) 1749-1779. | MR | Zbl
, , and ,[6] An optimal control approach to a-posteriori error estimation in finite element methods, edited by A. Iserles. Cambridge University Press. Acta Numerica (2001) 1-102. | MR | Zbl
and ,[7] L2 estimates for the finite element method for the Dirichlet problem with singular data. Numer. Math. 47 (1985) 627-632. | EuDML | MR | Zbl
,[8] Elliptic Boundary Value Problems on Corner Domains. Lect. Notes Math. 1341 (1988). | MR | Zbl
,[9] Interior penalty procedures for elliptic and parabolic Galerkin methods, in Computing methods in applied sciences (Second Internat. Sympos., Versailles, 1975). Lect. Notes Phys. 58 (1976) 207-216. | MR
and ,[10] Introduction to adaptive methods for differential equations, edited by A. Iserles. Cambridge University Press. Acta Numerica (1995) 105-158. | MR | Zbl
, , and ,[11] Elliptic Problems in Nonsmooth Domains. Pitman (1985). | MR | Zbl
,[12] Adaptive finite element approximation of hyperbolic problems, in Error Estimation and Adaptive Discretization Methods in Computational Fluid Dynamics, edited by T. Barth and H. Deconinck. Lect. Notes Comput. Sci. Eng. 25 (2002). | Zbl
and ,[13] Second-order elliptic PDE with discontinuous boundary data. IMA J. Numer. Anal. 32 (2012) 48-74. | MR | Zbl
and ,[14] A posteriori L2-error estimates for the nonconforming P1/P0-finite element discretization of the Stokes equations. J. Comput. Appl. Math. 96 (1998) 99-116. | MR | Zbl
,[15] Discontinuous Galerkin Methods for Solving Elliptic and Parabolic Equations, Theory and Implementation, in Front. Appl. Math. SIAM (2008). | Zbl
,[16] A priori error estimates for finite element methods based on discontinuous approximation spaces for elliptic problems. SIAM J. Numer. Anal. 39 (2001) 902-931 (electronic). | MR | Zbl
, and ,[17] Finite element convergence for singular data. Numer. Math. 21 (1973/1974) 317-327. | MR | Zbl
,[18] An elliptic collocation finite element method with interior penalties. SIAM J. Numer. Anal. 15 (1978) 152-161. | MR | Zbl
,[19] Discontinuous Galerkin methods for second-order elliptic PDE with low-regularity solutions. J. Sci. Comput. 46 (2011) 151-165. | MR | Zbl
and ,Cité par Sources :