We prove the discrete compactness property of the edge elements of any order on a class of anisotropically refined meshes on polyhedral domains. The meshes, made up of tetrahedra, have been introduced in [Th. Apel and S. Nicaise, Math. Meth. Appl. Sci. 21 (1998) 519-549]. They are appropriately graded near singular corners and edges of the polyhedron.
Mots-clés : discrete compactness property, edge elements, anisotropic finite elements, Maxwell equations
@article{M2AN_2013__47_1_169_0, author = {Lombardi, Ariel Luis}, title = {The discrete compactness property for anisotropic edge elements on polyhedral domains}, journal = {ESAIM: Mathematical Modelling and Numerical Analysis }, pages = {169--181}, publisher = {EDP-Sciences}, volume = {47}, number = {1}, year = {2013}, doi = {10.1051/m2an/2012024}, mrnumber = {2979513}, zbl = {1281.78014}, language = {en}, url = {http://archive.numdam.org/articles/10.1051/m2an/2012024/} }
TY - JOUR AU - Lombardi, Ariel Luis TI - The discrete compactness property for anisotropic edge elements on polyhedral domains JO - ESAIM: Mathematical Modelling and Numerical Analysis PY - 2013 SP - 169 EP - 181 VL - 47 IS - 1 PB - EDP-Sciences UR - http://archive.numdam.org/articles/10.1051/m2an/2012024/ DO - 10.1051/m2an/2012024 LA - en ID - M2AN_2013__47_1_169_0 ER -
%0 Journal Article %A Lombardi, Ariel Luis %T The discrete compactness property for anisotropic edge elements on polyhedral domains %J ESAIM: Mathematical Modelling and Numerical Analysis %D 2013 %P 169-181 %V 47 %N 1 %I EDP-Sciences %U http://archive.numdam.org/articles/10.1051/m2an/2012024/ %R 10.1051/m2an/2012024 %G en %F M2AN_2013__47_1_169_0
Lombardi, Ariel Luis. The discrete compactness property for anisotropic edge elements on polyhedral domains. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 47 (2013) no. 1, pp. 169-181. doi : 10.1051/m2an/2012024. http://archive.numdam.org/articles/10.1051/m2an/2012024/
[1] The finite element method with anisotropic mesh grading for elliptic problems in domains with corners and edges, Math. Meth. Appl. Sci. 21 (1998) 519-549. | MR | Zbl
and ,[2] Fortin operator and discrete compactness for edge elements. Numer. Math. 87 (2000) 229-246. | MR | Zbl
,[3] Finite element approximation of eigenvalue problems. Acta Numer. 19 (2010) 1-120. | MR | Zbl
,[4] Algebraic convergence for anisotropic edge elements in polyhedral domains. Numer. Math. 101 (2005) 29-65. | MR | Zbl
, and ,[5] On the convergence of Galerkin finite element approximations of electromagnetic eigenproblems, SIAM J. Numer. Anal. 38 (2000) 580-607. | MR | Zbl
, and ,[6] Spurious-free approximations of electromagnetic eigenproblems by means of Nedelec-type elements. Math. Model. Numer. Anal. 35 (2001) 331-354. | Numdam | MR | Zbl
, and ,[7] Finite Element Methods for Navier-Stokes Equations, in Theory and Applications. Springer-Verlag, Berlin (1986). | MR | Zbl
and ,[8] Finite elements in computational electromagnetism. Acta Numer. 11 (2002) 237-339. | MR | Zbl
,[9] On a discrete compactness property for the Nédélec finite elements. J. Fac. Sci. Univ. Tokyo Sect. IA Math. 36 (1989) 479-490. | MR | Zbl
,[10] On the maximum angle condition for linear tetrahedral elements. SIAM J. Numer. Anal. 29 (1992) 513-520. | MR | Zbl
,[11] Initial Boundary Value Problems in Mathematical Physics. John Wiley, New York (1986). | MR | Zbl
,[12] Interpolation error estimates for edge elements on anisotropic meshes. IMA J. Numer. Anal. 31 (2011) 1683-1712. | MR | Zbl
,[13] Finite Element Methods for Maxwell's Equations. Oxford University Press, New York (2003). | MR | Zbl
,[14] Discrete compactness and the approximation of Maxwell's equations in R3. Math. Comp. 70 (2001) 507-523. | MR | Zbl
and ,[15] Mixed finite elements in R3. Numer. Math. 35 (1980) 315-341. | EuDML | Zbl
,[16] Edge elements on anisotropic meshes and approximation of the Maxwell equations. SIAM J. Numer. Anal. 39 (2001) 784-816. | MR | Zbl
,[17] A mixed finite element method for second order elliptic problems, in Mathematical Aspects of the Finite Element Method, edited by I. Galligani and E. Magenes. Lect. Notes Math. 606 (1977). | MR | Zbl
and ,[18] A local compactness theorem for Maxwell's equations. Math. Meth. Appl. Sci. 2 (1980) 12-25. | MR | Zbl
,Cité par Sources :