The paper is concerned with the finite element solution of the Poisson equation with homogeneous Dirichlet boundary condition in a three-dimensional domain. Anisotropic, graded meshes from a former paper are reused for dealing with the singular behaviour of the solution in the vicinity of the non-smooth parts of the boundary. The discretization error is analyzed for the piecewise linear approximation in the H1(Ω)- and L2(Ω)-norms by using a new quasi-interpolation operator. This new interpolant is introduced in order to prove the estimates for L2(Ω)-data in the differential equation which is not possible for the standard nodal interpolant. These new estimates allow for the extension of certain error estimates for optimal control problems with elliptic partial differential equations and for a simpler proof of the discrete compactness property for edge elements of any order on this kind of finite element meshes.
Mots-clés : elliptic boundary value problem, edge and vertex singularities, finite element method, anisotropic mesh grading, optimal control problem, discrete compactness property
@article{M2AN_2014__48_4_1117_0, author = {Apel, Thomas and Lombardi, Ariel L. and Winkler, Max}, title = {Anisotropic mesh refinement in polyhedral domains: error estimates with data in $L^2(\Omega )$}, journal = {ESAIM: Mathematical Modelling and Numerical Analysis }, pages = {1117--1145}, publisher = {EDP-Sciences}, volume = {48}, number = {4}, year = {2014}, doi = {10.1051/m2an/2013134}, language = {en}, url = {http://archive.numdam.org/articles/10.1051/m2an/2013134/} }
TY - JOUR AU - Apel, Thomas AU - Lombardi, Ariel L. AU - Winkler, Max TI - Anisotropic mesh refinement in polyhedral domains: error estimates with data in $L^2(\Omega )$ JO - ESAIM: Mathematical Modelling and Numerical Analysis PY - 2014 SP - 1117 EP - 1145 VL - 48 IS - 4 PB - EDP-Sciences UR - http://archive.numdam.org/articles/10.1051/m2an/2013134/ DO - 10.1051/m2an/2013134 LA - en ID - M2AN_2014__48_4_1117_0 ER -
%0 Journal Article %A Apel, Thomas %A Lombardi, Ariel L. %A Winkler, Max %T Anisotropic mesh refinement in polyhedral domains: error estimates with data in $L^2(\Omega )$ %J ESAIM: Mathematical Modelling and Numerical Analysis %D 2014 %P 1117-1145 %V 48 %N 4 %I EDP-Sciences %U http://archive.numdam.org/articles/10.1051/m2an/2013134/ %R 10.1051/m2an/2013134 %G en %F M2AN_2014__48_4_1117_0
Apel, Thomas; Lombardi, Ariel L.; Winkler, Max. Anisotropic mesh refinement in polyhedral domains: error estimates with data in $L^2(\Omega )$. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 48 (2014) no. 4, pp. 1117-1145. doi : 10.1051/m2an/2013134. http://archive.numdam.org/articles/10.1051/m2an/2013134/
[1] Interpolation of non-smooth functions on anisotropic finite element meshes. ESAIM: M2AN 33 (1999) 1149-1185. | Numdam | MR | Zbl
,[2] Anisotropic interpolation with applications to the finite element method. Computing 47 (1992) 277-293. | MR | Zbl
and ,[3] Mesh refinement and windowing near edges for some elliptic problem. SIAM J. Numer. Anal. 31 (1994) 695-708. | MR | Zbl
and ,[4] The finite element method with anisotropic mesh grading for elliptic problems in domains with corners and edges. Math. Methods Appl. Sci. 21 (1998) 519-549. | MR | Zbl
and ,[5] Graded mesh refinement and error estimates for finite element solutions of elliptic boundary value problems in non-smooth domains. Math. Methods Appl. Sci. 19 (1996) 63-85. | MR | Zbl
, , and ,[6] L2-error estimates for Dirichlet and Neumann problems on anisotropic finite element meshes. Appl. Math. 56 (2011) 177-206. | MR | Zbl
and ,[7] A priori mesh grading for distributed optimal control problems, in Constrained Optimization and Optimal Control for Partial Differential Equations, vol. 160. Edited by G. Leugering, S. Engell, A. Griewank, M. Hinze, R. Rannacher, V. Schulz, M. Ulbrich, and S. Ulbrich. Int. Ser. Numer. Math.. Springer, Basel (2011) 377-389. | MR
and ,[8] Numerical solution to the time-dependent Maxwell equations in two-dimensional singular domains: the Singular Complement Method. J. Comput. Phys. 161 (2000) 218-249. | MR | Zbl
, and ,[9] Finite element method for domains with corners. Computing 6 (1970) 264-273. | MR | Zbl
,[10] Finite element treatment of boundary singularities by augmentation with non-exact singular functions. Numer. Methods Partial Differ. Eqs. 2 (1986) 113-121. | MR | Zbl
and ,[11] On finite element methods for elliptic equations on domains with corners. Computing 28 (1982) 53-63. | MR | Zbl
and ,[12] Improving the rate of convergence of high-order finite elements in polyhedra II: mesh refinements and interpolation. Numer. Funct. Anal. Optim. 28 (2007) 775-824. | MR | Zbl
, and ,[13] Algebraic convergence for anisotropic edge elements in polyhedral domains. Numer. Math. 101 (2005) 29-65. | MR | Zbl
, and ,[14] Approximation by finite element functions using local regularization. RAIRO Anal. Numer. 2 (1975) 77-84. | EuDML | Numdam | Zbl
,[15] Polynomial approximation of functions in Sobolev spaces. Math. Comput. 34 (1980) 441-463. | MR | Zbl
and ,[16] Singularities in boundary value problems, vol. 22. Research Notes Appl. Math. Springer, New York (1992). | MR | Zbl
,[17] A variational discretization concept in control constrained optimization: The linear-quadratic case. Comput. Optim. Appl. 30 (2005) 45-61. | MR | Zbl
.[18] Estimations d'erreur pour des éléments finis droits presque dégénérés. R.A.I.R.O. Anal. Numer. 10 (1976) 43-61. | EuDML | Numdam | MR | Zbl
,[19] MooNMD-a program package based on mapped finite element methods. Comput. Visual. Sci. 6 (2004) 163-169. | MR | Zbl
and ,[20] On a discrete compactness property for the nédélec finite elements. J. Fac. Sci. Univ. Tokyo Sect. IA Math. 36 (1989) 479-490. | MR | Zbl
,[21] The discrete compactness property for anisotropic edge elements on polyhedral domains. ESAIM: M2AN 47 (2013) 169-181. | EuDML | Numdam | MR | Zbl
,[22] Dirichlet problems in polyhedral domains II: approximation by FEM and BEM. J. Comput. Appl. Math. 61 (1995) 13-27,. | MR | Zbl
and ,[23] Finite Element Methods for Maxwell's Equations. Oxford University Press, New York (2003). | MR | Zbl
,[24] Les méthodes directes en théorie des équations elliptiques. Masson et Cie, Éditeurs, Paris, Academia, Éditeurs, Paris, Prague (1967). | MR | Zbl
,[25] Edge elements on anisotropic meshes and approximation of the Maxwell equations. SIAM J. Numer. Anal. 39 (2001) 784-816. | MR | Zbl
,[26] Variational-difference schemes for linear second-order elliptic equations in a two-dimensional region with piecewise smooth boundary. Zh. Vychisl. Mat. Mat. Fiz. 8 (1968) 97-114. In Russian. English translation in USSR Comput. Math. and Math. Phys. 8 (1968) 129-152. | Zbl
and ,[27] Regularity of mixed boundary value problems in ℝ3 and boundary element methods on graded meshes. Math. Methods Appl. Sci. 12 (1990) 229-249. | MR | Zbl
and .[28] Résolution numérique de problèmes elliptiques dans des domaines avec coins. Ph.D. thesis. Université de Rennes (1978).
,[29] Maximum norm estimates in the finite element method on plane polygonal domains. Part 2: Refinements. Math. Comput. 33 (1979) 465-492. | MR | Zbl
and ,[30] On three-dimensional singularities of elastic fields near vertices. Numer. Methods Partial Differ. Eqs. 9 (1993) 323-337. | MR | Zbl
, and ,[31] Finite element interpolation of non-smooth functions satisfying boundary conditions. Math. Comput. 54 (1990) 483-493. | MR | Zbl
and ,[32] An a posteriori error estimator for anisotropic refinement. Numer. Math. 73 (1996) 373-398. | MR | Zbl
,[33] An analysis of the finite element method. Prentice-Hall, Englewood Cliffs, NJ (1973). | MR | Zbl
and ,Cité par Sources :