@article{M2AN_1999__33_6_1149_0, author = {Apel, Thomas}, title = {Interpolation of non-smooth functions on anisotropic finite element meshes}, journal = {ESAIM: Mod\'elisation math\'ematique et analyse num\'erique}, pages = {1149--1185}, publisher = {EDP-Sciences}, volume = {33}, number = {6}, year = {1999}, mrnumber = {1736894}, zbl = {0984.65113}, language = {en}, url = {http://archive.numdam.org/item/M2AN_1999__33_6_1149_0/} }
TY - JOUR AU - Apel, Thomas TI - Interpolation of non-smooth functions on anisotropic finite element meshes JO - ESAIM: Modélisation mathématique et analyse numérique PY - 1999 SP - 1149 EP - 1185 VL - 33 IS - 6 PB - EDP-Sciences UR - http://archive.numdam.org/item/M2AN_1999__33_6_1149_0/ LA - en ID - M2AN_1999__33_6_1149_0 ER -
%0 Journal Article %A Apel, Thomas %T Interpolation of non-smooth functions on anisotropic finite element meshes %J ESAIM: Modélisation mathématique et analyse numérique %D 1999 %P 1149-1185 %V 33 %N 6 %I EDP-Sciences %U http://archive.numdam.org/item/M2AN_1999__33_6_1149_0/ %G en %F M2AN_1999__33_6_1149_0
Apel, Thomas. Interpolation of non-smooth functions on anisotropic finite element meshes. ESAIM: Modélisation mathématique et analyse numérique, Tome 33 (1999) no. 6, pp. 1149-1185. http://archive.numdam.org/item/M2AN_1999__33_6_1149_0/
[1] Finite-Elemente-Methoden über lokal verfeinerten Netzen für elliptische Probleme in Gebieten mit Kanten. Ph.D. thesis, TU Chemnitz (1991). | Zbl
,[2] Anisotropic interpolation error estimates for isoparametric quadrilateral finite elements. Computing 60 (1998)157-174. | MR | Zbl
,[3] Anisotropic finite elements: Local estimates and applications. Teubner, Stuttgart (1999). | MR | Zbl
,[4] Anisotropic interpolation with applications to the finite element method. Computing 47 (1992) 277-293. | MR | Zbl
and ,[5] Mesh refinement and windowing near edges for some elliptic problem. SIAM J. Numer. Anal. 31 (1994) 695-708. | MR | Zbl
and ,[6] Anisotropic mesh refinement in stabilized Galerkin methods. Numer. Math. 74 (1996) 261-282. | MR | Zbl
and ,[7] Anisotropic mesh refinement for a singularly perturbed reaction diffusion model problem. Appl. Numer. Math. 26 (1998) 415-433. | MR | Zbl
and ,[8] Comparison of several mesh refinement strategies near edges. Comm. Numer. Methods Engrg, 12 (1996) 373-381. | Zbl
and ,[9] Elliptic problems in domains with edges: anisotropic regularity and anisotropic finite element meshes, in Partial Differential Equations and Functional Analysis (In Memory of Pierre Grisvard), J. Cea, D. Chenais, G. Geymonat, and J.L. Lions Eds., Birkhäuser, Boston (1996) 18-34. Shortened version of Preprint SPC94_16, TU Chemnitz-Zwickau (1994). | MR | Zbl
and ,[10] The finite element method with anisotropic mesh grading for the Poisson problem in domains with edges. Technical report, TU Chemnitz-Zwickau (1996). Improved version of Preprint SPC94_16, TU Chemnitz-Zwickau (1994), available only via ftp, server ftp.tu-chemnitz.de, directory pub/Local/mathematik/Apel, file anl.ps.Z.
and ,[11] The finite element method with anisotropic mesh grading for elliptic problems in domains with corners and edges. Math. Methods Appl. Sci. 21 (1998) 519-549. | MR | Zbl
and ,[12] Graded mesh refinement and error estimates for finite element solutions of elliptic boundary value problems in non-smooth domains. Math. Methods Appl. Sci. 19 (1996) 63-85. | MR | Zbl
, and ,[13] Direct and inverse error estimates for finite elements with mesh refinements.Numer. Math. 33 (1979) 447-471. | MR | Zbl
, and ,[14] Finite element treatment of boundary singularities by augmentation with non-exact singular functions. Numer. Methods Partial Differential Equations 2 (1986) 113-121. | MR | Zbl
and ,[15] An adaptive finite element method for the incompressible Navier-Stokes equations on time-dependent domains. Ph.D. thesis, Ruprecht-Karls-Universität Heidelberg (1995). | Zbl
,[16] Estimation of linear functionals on Sobolev spaces with applications to Fourier transforms and spline interpolation. SIAM J. Numer. Anal 7 (1970) 112-124. | MR | Zbl
and ,[17] Bounds for a class of linear functionals with applications to Hermite interpolation. Numer. Math. 16 (1971) 362-369. | MR | Zbl
and ,[18] The finite element method for elliptic problems. North-Holland, Amsterdam (1978). | MR | Zbl
,[19] Approximation by finite element functions using local regularization. RAIRO Anal. Numér. 9 (1975) 77-84. | Numdam | MR | Zbl
,[20] A priori estimates for the solution of convection-diffusion problems and interpolation on Shishkin meshes. Z. Anal. Anwendungen 16 (1997) 1001-1012. | MR | Zbl
and ,[21] Polynomial approximation of functions in Sobolev spaces. Math. Comput. 34 (1980) 441-463. | MR | Zbl
and ,[22] Error estimates for 3-d narrow finite elements. Math. Comput. 68 (1999) 187-199. | MR | Zbl
,[23] Some Applications of Weighted Sobolev Spaces. Teubner, Leipzig (1987). | MR | Zbl
and ,[24] Error estimation for anisotropic tetrahedral and triangular finite element meshes. Preprint SFB393/97-17, TUChemnitz (1997).
,[25] Dirichlet problems in polyhedral domains II: approximation by FEM and BEM. J. Comput. Appl. Math. 61 (1995) 13-27. | MR | Zbl
and ,[26] Finite element method for elliptic problems with edge corners. J.Comput. Appl. Math, (submitted). | Zbl
and ,[27] Variational-difference methods for the solution of elliptic equations. Izd. Akad. Nauk Armyanskoi SSR, Jerevan (1979). In Russian. | MR | Zbl
and ,[28] Multilevel Finite Element Approximation: Theory and Applications. Teubner, Stuttgart (1994). | MR | Zbl
,[29] Randwertprobleme der Elastizitätstheorie für Polyeder - Singularitäten und Approximationen mit Randelementmethoden. Ph.D. thesis, TH Darmstadt (1989). | Zbl
,[30] Finite element interpolation of non-smooth functions satisfying boundary conditions. Math. Comp.54 (1990) 483-493. | MR | Zbl
and ,[31] Uniform error estimates for certain narrow Lagrangian finite elements. Math. Comp. 63 (1994) 105-119. | MR | Zbl
,[32] An a posteriori error estimator for anisotropic refinement. Numer. Math. 73 (1996) 373-398. | MR | Zbl
,[33] Singularities of the Laplacian at corners and edges of three-dimensional domains and their treatment with finite element methods. Math. Methods Appl Sci. 10 (1988) 339-350. | MR | Zbl
and ,[34] Numerical determination of the fundamental eigenvalue for the Laplace operator on a spherical domain. J. Engrg. Math. 11 (1977) 299-318. | MR | Zbl
and ,