An efficient computational framework for reduced basis approximation and a posteriori error estimation of parametrized Navier-Stokes flows
ESAIM: Mathematical Modelling and Numerical Analysis , Tome 48 (2014) no. 4, pp. 1199-1226.

We present the current Reduced Basis framework for the efficient numerical approximation of parametrized steady Navier-Stokes equations. We have extended the existing setting developed in the last decade (see e.g. [S. Deparis, SIAM J. Numer. Anal. 46 (2008) 2039-2067; A. Quarteroni and G. Rozza, Numer. Methods Partial Differ. Equ. 23 (2007) 923-948; K. Veroy and A.T. Patera, Int. J. Numer. Methods Fluids 47 (2005) 773-788]) to more general affine and nonaffine parametrizations (such as volume-based techniques), to a simultaneous velocity-pressure error estimates and to a fully decoupled Offline/Online procedure in order to speedup the solution of the reduced-order problem. This is particularly suitable for real-time and many-query contexts, which are both part of our final goal. Furthermore, we present an efficient numerical implementation for treating nonlinear advection terms in a convenient way. A residual-based a posteriori error estimation with respect to a truth, full-order Finite Element approximation is provided for joint pressure/velocity errors, according to the Brezzi-Rappaz-Raviart stability theory. To do this, we take advantage of an extension of the Successive Constraint Method for the estimation of stability factors and of a suitable fixed-point algorithm for the approximation of Sobolev embedding constants. Finally, we present some numerical test cases, in order to show both the approximation properties and the computational efficiency of the derived framework.

DOI : 10.1051/m2an/2014013
Classification : 65M15, 65M60, 65N12, 76D07, 78M34
Mots-clés : reduced basis method, parametrized Navier-Stokes equations, steady incompressible fluids, a posteriori error estimation, approximation stability
@article{M2AN_2014__48_4_1199_0,
     author = {Manzoni, Andrea},
     title = {An efficient computational framework for reduced basis approximation and \protect\emph{a posteriori }error estimation of parametrized {Navier-Stokes} flows},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis },
     pages = {1199--1226},
     publisher = {EDP-Sciences},
     volume = {48},
     number = {4},
     year = {2014},
     doi = {10.1051/m2an/2014013},
     zbl = {1301.76025},
     language = {en},
     url = {http://archive.numdam.org/articles/10.1051/m2an/2014013/}
}
TY  - JOUR
AU  - Manzoni, Andrea
TI  - An efficient computational framework for reduced basis approximation and a posteriori error estimation of parametrized Navier-Stokes flows
JO  - ESAIM: Mathematical Modelling and Numerical Analysis 
PY  - 2014
SP  - 1199
EP  - 1226
VL  - 48
IS  - 4
PB  - EDP-Sciences
UR  - http://archive.numdam.org/articles/10.1051/m2an/2014013/
DO  - 10.1051/m2an/2014013
LA  - en
ID  - M2AN_2014__48_4_1199_0
ER  - 
%0 Journal Article
%A Manzoni, Andrea
%T An efficient computational framework for reduced basis approximation and a posteriori error estimation of parametrized Navier-Stokes flows
%J ESAIM: Mathematical Modelling and Numerical Analysis 
%D 2014
%P 1199-1226
%V 48
%N 4
%I EDP-Sciences
%U http://archive.numdam.org/articles/10.1051/m2an/2014013/
%R 10.1051/m2an/2014013
%G en
%F M2AN_2014__48_4_1199_0
Manzoni, Andrea. An efficient computational framework for reduced basis approximation and a posteriori error estimation of parametrized Navier-Stokes flows. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 48 (2014) no. 4, pp. 1199-1226. doi : 10.1051/m2an/2014013. http://archive.numdam.org/articles/10.1051/m2an/2014013/

[1] M. Barrault, Y. Maday, N.C. Nguyen and A.T. Patera, An “empirical interpolation” method: application to efficient reduced-basis discretization of partial differential equations. C. R. Math. Acad. Sci. Paris 339 (2004) 667-672. | MR | Zbl

[2] G. Biswas, M. Breuer and F. Durst, Backward-facing step flows for various expansion ratios at low and moderate Reynolds numbers. J. Fluids Eng. 126 (2004) 362-374.

[3] F. Brezzi, On the existence, uniqueness, and approximation of saddle point problems arising from Lagrangian multipliers. RAIRO. Anal. Numér. 2 (1974) 129-151. | Numdam | MR | Zbl

[4] F. Brezzi, J. Rappaz and P.A. Raviart, Finite dimensional approximation of nonlinear problems. Part I: Branches of nonsingular solutions. Numer. Math. 36 (1980) 1-25. | MR | Zbl

[5] G. Caloz and J. Rappaz, Numerical analysis for nonlinear and bifurcation problems. In vol. 5, Techniques of Scientific Computing (Part 2). Handbook of Numerical Analysis, edited by P.G. Ciarlet and J.L. Lions. Elsevier Science B.V. (1997) 487-637. | MR

[6] C. Canuto, T. Tonn and K. Urban, A posteriori error analysis of the reduced basis method for non-affine parameterized nonlinear pdes. SIAM J. Numer. Anal. 47 (2009) 2001-2022. | MR | Zbl

[7] S. Deparis, Reduced basis error bound computation of parameter-dependent Navier-Stokes equations by the natural norm approach. SIAM J. Numer. Anal. 46 (2008) 2039-2067. | MR | Zbl

[8] S. Deparis and G. Rozza, Reduced basis method for multi-parameter-dependent steady Navier-Stokes equations: Applications to natural convection in a cavity. J. Comput. Phys. 228 (2009) 4359-437. | MR | Zbl

[9] H.C. Elman, D.J. Silvester and A.J. Wathen, Finite Elements and Fast Iterative Solvers with Applications in Incompressible Fluid Dynamics. Series in Numer. Math. Sci. Comput. Oxford Science Publications, Clarendon Press, Oxford (2005). | MR

[10] A.-L. Gerner and K. Veroy, Reduced basis a posteriori error bounds for the Stokes equations in parametrized domains: a penalty approach. Math. Models Methods Appl. Sci. 21 (2010) 2103-2134. | MR

[11] P.M. Gresho and R.L. Sani, Incompressible Flow and the Finite Element Method: Advection-Diffusion and Isothermal Laminar Flow.John Wiley & Sons (1998). | Zbl

[12] H. Herrero, Y. Maday and F. Pla, RB (reduced basis) for RB (Rayleigh-Bénard). Comput. Methods Appl. Mech. Engrg. 261-262 (2013) 132-141. | MR | Zbl

[13] D.B.P. Huynh, D.J. Knezevic, Y. Chen, J.S. Hesthaven and A.T. Patera, A natural-norm successive constraint method for inf-sup lower bounds. Comput. Methods Appl. Mech. Engrg. 199 (2010) 1963-1975. | MR | Zbl

[14] K. Ito and S.S. Ravindran, A reduced order method for simulation and control of fluid flows. J. Comput. Phys. 143 (1998) 403-425. | MR | Zbl

[15] T. Lassila, A. Manzoni, A. Quarteroni and G. Rozza, Boundary control and shape optimization for the robust design of bypass anastomoses under uncertainty. ESAIM: M2AN 47 (2013) 1107-1131. | Numdam | MR

[16] T. Lassila, A. Manzoni, A. Quarteroni and G. Rozza, Model order reduction in fluid dynamics: challenges and perspectives. In vol. 9, Reduced Order Methods for Modeling and Computational Reduction. Edited by A. Quarteroni and G. Rozza. Springer MS&A Series (2014) 235-274. | MR

[17] A. Manzoni, Reduced models for optimal control, shape optimization and inverse problems in haemodynamics. Ph.D. thesis, École Polytechnique Fédérale de Lausanne (2012).

[18] A. Manzoni and F. Negri, Rigorous and heuristic strategies for the approximation of stability factors in nonlinear parametrized PDEs. Technical report MATHICSE 8.2014: http://mathicse.epfl.ch/, submitted (2014).

[19] A. Manzoni, A. Quarteroni and G. Rozza, Model reduction techniques for fast blood flow simulation in parametrized geometries. Int. J. Numer. Methods Biomed. Engrg. 28 (2012) 604-625. | MR

[20] A. Manzoni, A. Quarteroni and G. Rozza, Shape optimization of cardiovascular geometries by reduced basis methods and free-form deformation techniques. Int. J. Numer. Methods Fluids 70 (2012) 646-670. | MR

[21] N.C. Nguyen, K. Veroy and A.T. Patera, Certified real-time solution of parametrized partial differential equations. Handbook of Materials Modeling. Edited by S. Yip. Springer, The Netherlands (2005) 1523-1558.

[22] J.S. Peterson, The reduced basis method for incompressible viscous flow calculations. SIAM J. Sci. Statis. Comput. 10 (1989) 777-786. | MR | Zbl

[23] A. Quarteroni and G. Rozza, Numerical solution of parametrized Navier-Stokes equations by reduced basis methods. Numer. Methods Partial Differ. Equ. 23 (2007) 923-948. | MR | Zbl

[24] A. Quarteroni, G. Rozza and A. Manzoni, Certified reduced basis approximation for parametrized partial differential equations in industrial applications. J. Math. Ind. 1 (2011). | MR | Zbl

[25] A. Quarteroni and A. Valli, Numerical Approximation of Partial Differential Equations 1st edition. Springer-Verlag, Berlin-Heidelberg (1994). | MR | Zbl

[26] G. Rozza, D.B.P. Huynh and A. Manzoni, Reduced basis approximation and a posteriori error estimation for Stokes flows in parametrized geometries: roles of the inf-sup stability constants. Numer. Math. 125 (2013) 115-152. | MR

[27] G. Rozza, D.B.P. Huynh and A.T. Patera, Reduced basis approximation and a posteriori error estimation for affinely parametrized elliptic coercive partial differential equations. Arch. Comput. Methods Engrg. 15 (2008) 229-275. | MR

[28] G. Rozza and K. Veroy, On the stability of reduced basis methods for Stokes equations in parametrized domains. Comput. Methods Appl. Mech. Engrg. 196 (2007) 1244-1260. | MR | Zbl

[29] S. Sen, K. Veroy, D.B.P. Huynh, S. Deparis, N.C. Nguyen and A.T. Patera, “Natural norm” a posteriori error estimators for reduced basis approximations. J. Comput. Phys. 217 (2006) 37-62. | MR | Zbl

[30] R. Temam, Navier-Stokes Equations. AMS Chelsea, Providence, Rhode Island (2001). | MR | Zbl

[31] K. Veroy and A.T. Patera, Certified real-time solution of the parametrized steady incompressible Navier-Stokes equations: rigorous reduced-basis a posteriori error bounds. Int. J. Numer. Methods Fluids 47 (2005) 773-788. | MR | Zbl

[32] M. Yano and A.T. Patera, A space-time variational approach to hydrodynamic stability theory. Proc. R. Soc. A 469 (2013) 0036. | MR

Cité par Sources :