We study a finite volume scheme, introduced in a previous paper [G.P. Panasenko and M.-C. Viallon, Math. Meth. Appl. Sci. 36 (2013) 1892–1917], to solve an elliptic linear partial differential equation in a rod structure. The rod-structure is two-dimensional (2D) and consists of a central node and several outgoing branches. The branches are assumed to be one-dimensional (1D). So the domain is partially 1D, and partially 2D. We call such a structure a geometrical multi-scale domain. We establish a discrete Poincaré inequality in terms of a specific norm defined on this geometrical multi-scale 1D-2D domain, that is valid for functions that satisfy a Dirichlet condition on the boundary of the 1D part of the domain and a Neumann condition on the boundary of the 2D part of the domain. We derive an error estimate between the solution of the equation and its numerical finite volume approximation.
DOI : 10.1051/m2an/2014042
Mots-clés : Finite volume scheme, elliptic problem, discrete Poincaré inequality, error estimate, multi-scale domain
@article{M2AN_2015__49_2_529_0, author = {Viallon, Marie-Claude}, title = {Error estimate for a finite volume scheme in a geometrical multi-scale domain}, journal = {ESAIM: Mathematical Modelling and Numerical Analysis }, pages = {529--550}, publisher = {EDP-Sciences}, volume = {49}, number = {2}, year = {2015}, doi = {10.1051/m2an/2014042}, mrnumber = {3342216}, zbl = {1317.65225}, language = {en}, url = {http://archive.numdam.org/articles/10.1051/m2an/2014042/} }
TY - JOUR AU - Viallon, Marie-Claude TI - Error estimate for a finite volume scheme in a geometrical multi-scale domain JO - ESAIM: Mathematical Modelling and Numerical Analysis PY - 2015 SP - 529 EP - 550 VL - 49 IS - 2 PB - EDP-Sciences UR - http://archive.numdam.org/articles/10.1051/m2an/2014042/ DO - 10.1051/m2an/2014042 LA - en ID - M2AN_2015__49_2_529_0 ER -
%0 Journal Article %A Viallon, Marie-Claude %T Error estimate for a finite volume scheme in a geometrical multi-scale domain %J ESAIM: Mathematical Modelling and Numerical Analysis %D 2015 %P 529-550 %V 49 %N 2 %I EDP-Sciences %U http://archive.numdam.org/articles/10.1051/m2an/2014042/ %R 10.1051/m2an/2014042 %G en %F M2AN_2015__49_2_529_0
Viallon, Marie-Claude. Error estimate for a finite volume scheme in a geometrical multi-scale domain. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 49 (2015) no. 2, pp. 529-550. doi : 10.1051/m2an/2014042. http://archive.numdam.org/articles/10.1051/m2an/2014042/
A new cement to glue non-conforming grids with Robin interface conditions: the finite volume case. Numer. Math. 92 (2002) 593–620. | DOI | MR | Zbl
, , and ,Relaxation methods and coupling procedures. Int. J. Numer. Methods Fluids 56 (2008) 1123–1129. | DOI | MR | Zbl
, , , , , and ,Discrete duality finite volume schemes for Leray-Lions-type elliptic problems on general 2D meshes. Numer. Method Partial Differ. Eq. 23 (2007) 145–195. | DOI | MR | Zbl
, and ,Baier, Analysis of a finite volume method for a cross-diffusion model in population dynamics. Math. Meth. Appl. Sci. 21 (2011) 307–344. | DOI | MR | Zbl
, andM. Bessemoulin-Chatard, C. Chainais-Hillairet and F. Filbet, On discrete functional inequalities for some finite volume schemes. To appear in IMA J. Numer. Anal. (2014). | MR
A unified variational approach for coupling 3D-1D models and its blood flow applications. Comput. Methods Appl. Mech. Eng. 196 (2007) 4391–4410. | DOI | MR | Zbl
, and ,Black-box decomposition approach for computational hemodynamics: One-dimensional models. Comput. Methods Appl. Mech. Eng. 200 (2011) 1389–1405. | DOI | MR | Zbl
, , and ,On the potentialities of 3D-1D coupled models in hemodynamics simulations. J. Biomech. 42 (2009) 919–930. | DOI
, , and ,Assessing the influence of heart rate in local hemodynamics through coupled 3D-1D-0D models. Int. J. Numer. Methods Biomed. Eng. 26 (2010) 890–903. | Zbl
, and ,Existence result for the coupling problem of two scalar conservation laws with Riemann initial data. Math. Models Methods Appl. Sci. 20 (2010) 1859–1898. | DOI | MR | Zbl
, and ,The Lions domain decomposition algorithm on non matching cell-centred finite volume meshes. IMA J. Numer. Anal. 24 (2004) 465–490. | DOI | MR | Zbl
, and ,Finite volume schemes for non-coercive elliptic problems with Neumann boundary conditions. IMA J. Numer. Anal. 31 (2011) 61–85. | DOI | MR | Zbl
and ,Convergence rate of a finite volume scheme for a two-dimensional convection-diffusion problem. ESAIM: M2AN 33 (1999) 493–516. | DOI | Numdam | MR | Zbl
, and ,Discrete Sobolev Inequalities and error estimates for finite volume solutions of convection diffusion equations. ESAIM: M2AN 35 (2001) 767–778. | DOI | Numdam | MR | Zbl
, and ,A finite volume method for the Laplace equation on almost arbitrary two-dimensional grids. ESAIM: M2AN 39 (2005) 1203–1249. | DOI | Numdam | MR | Zbl
and ,Evaluation of interface models for 3D-1D coupling of compressible Euler methods for the application on cavitating flows. CEMRACS’11: Multiscale coupling of complex models in scientific computing. ESAIM Proceedings. EDP Sciences Les Ulis 38 (2012) 298–318. | MR | Zbl
, , , and ,A finite volume scheme for a noncoercive elliptic equation with measure data. SIAM J. Numer. Anal. 41 (2003) 1997–2031. | DOI | MR | Zbl
, and ,Discretization of heterogeneous and anisotropic diffusion problems on general nonconforming meshes SUSHI: a scheme using stabilization and hybrid interfaces. IMA J. Numer. Anal. 30 (2010) 1009–1043. | DOI | MR | Zbl
, and ,R. Eymard, T. Gallouët and R. Herbin, Finite Volume Methods. Handb. Numer. Anal. Edited by P.G. Ciarlet and J.L. Lions (2000). | MR | Zbl
A finite volume scheme for the Patlak-Keller-Segel chemotaxis model. Numer. Math. 104 (2006) 457–488. | DOI | MR | Zbl
,FEM implementation for the asymptotic partial decomposition. Appl. Anal. Int. J. 86 (2007) 519–536. | DOI | MR | Zbl
, and ,Multiscale modelling of the circulatory system: a preliminary analysis. Comput. Visual. Sci. 2 (1999) 75–83. | DOI | Zbl
, , and ,On the coupling of 3D and 1D Navier–Stokes equations for flow problems in compliant vessels. Comput. Methods Appl. Mech. Eng. 191 (2001) 561–582. | DOI | MR | Zbl
, , and ,L. Formaggia, A. Quarteroni and A. Veneziani, Cardiovascular Mathematics, Series: Model. Simul. Appl., vol. 1. Springer (2009). | MR | Zbl
Error estimates on the approximate finite volume solution of convection diffusion equations with general boundary conditions. SIAM J. Numer. Anal. 37 (2000) 1935–1972. | DOI | MR | Zbl
, and ,Discrete Sobolev–Poincaré Inequalities for Voronoi Finite Volume Approximations. SIAM J. Numer. Anal. 48 (2010) 372–391. | DOI | MR | Zbl
and ,P. Grisvard, Elliptic Problems in Non Smooth Domains. Pitman (1985). | MR | Zbl
Coupling two and one-dimensional unsteady Euler equations through a thin interface. Comput. Fluids 36 (2007) 651–666. | DOI | Zbl
and ,An error estimate for a finite volume scheme for a diffusion-convection problem on a triangular mesh. Numer. Method Partial Differ. Eq. 11 (1995) 165–173. | DOI | MR | Zbl
,Artificial boundaries and flux and pressure conditions for the incompressible Navier–Stokes equations. Int. J. Num. Meth. Fl. 22 (1996) 325–352. | DOI | MR | Zbl
, and ,Discrete Poincaré inequalities for arbitrary meshes in the discrete duality finite volume context. Electronic Trans. Numer. Anal. 40 (2013) 94–119. | MR | Zbl
and ,Iterative strong coupling of dimensionally heterogeneous models. Int. J. Numer. Methods Eng. 81 (2010) 1558–1580. | MR | Zbl
, and ,Partitioned analysis for dimensionally-heterogeneous hydraulic networks. SIAM Multiscale Model. Simul. 9 (2011) 872–903. | DOI | MR | Zbl
, and ,Implicit coupling of one-dimensional and three-dimensional blood flow models with compliant vessels. Multiscale Model. Simul. 11 (2013) 474–506. | DOI | MR | Zbl
, , , and ,Method of asymptotic partial decomposition of domain. Math. Models Methods Appl. Sci. 8 (1998) 139–156. | DOI | MR | Zbl
,Error estimate in a finite volume approximation of the partial asymptotic domain decomposition. Math. Meth. Appl. Sci. 36 (2013) 1892–1917. | DOI | MR | Zbl
and ,The finite volume implementation of the partial asymptotic domain decomposition. Appl. Anal. Int. J. 87 (2008) 1397–1424. | DOI | MR | Zbl
and ,A 3D/1D geometrical multiscale model of cerebral vasculature. J. Eng. Math. 64 (2009) 319–330. | DOI | MR | Zbl
, , and ,A. Quarteroni and L. Formaggia, Mathematical Modelling and Numerical Simulation of the Cardiovascular System. Modelling of Living Systems. Edited by N. Ayache. Handb. Numer. Anal. Series (2002). | MR
Finite volume methods for domain decomposition on non matching grids with arbitrary interface conditions. SIAM J. Numer. Anal. 43 (2005) 860–890. | DOI | MR | Zbl
, , and ,Multidimensional modelling for the carotid artery blood flow. Comput. Methods Appl. Mech. Eng. 195 (2006) 4002–4017. | DOI | MR | Zbl
, , and ,Error estimate for a 1D-2D finite volume scheme. Comparison with a standard scheme on a 2D non-admissible mesh. C. R. Acad. Sci. Paris, Ser. I 351 (2013) 47–51. | DOI | MR | Zbl
,On the discrete Poincaré-Friedrichs inequalities for nonconforming approximations of the sobolev space . Numer. Funct. Anal. Optim. 26 (2005) 925–952. | DOI | MR | Zbl
,M. Vohralik, Numerical methods for nonlinear elliptic and parabolic equations. Application to flow problems in porous and fractured media. Ph.D. thesis, Université de Paris-Sud and Czech Technical University in Prague.
Mathematical model of blood flow in an anatomically detailed arterial network of the arm. ESAIM: M2AN 47 (2013) 961–985. | DOI | Numdam | MR | Zbl
, and ,Cité par Sources :