We revisit the duality theorem for multimarginal optimal transportation problems. In particular, we focus on the Coulomb cost. We use a discrete approximation to prove equality of the extremal values and some careful estimates of the approximating sequence to prove existence of maximizers for the dual problem (Kantorovich’s potentials). Finally we observe that the same strategy can be applied to a more general class of costs and that a classical results on the topic cannot be applied here.
DOI : 10.1051/m2an/2015035
Mots-clés : Multimarginal optimal transportation, Monge−Kantorovich problem, duality theory, Coulomb cost
@article{M2AN_2015__49_6_1643_0, author = {De Pascale, Luigi}, title = {Optimal transport with {Coulomb} cost. {Approximation} and duality}, journal = {ESAIM: Mathematical Modelling and Numerical Analysis }, pages = {1643--1657}, publisher = {EDP-Sciences}, volume = {49}, number = {6}, year = {2015}, doi = {10.1051/m2an/2015035}, zbl = {1330.49048}, mrnumber = {3423269}, language = {en}, url = {https://www.numdam.org/articles/10.1051/m2an/2015035/} }
TY - JOUR AU - De Pascale, Luigi TI - Optimal transport with Coulomb cost. Approximation and duality JO - ESAIM: Mathematical Modelling and Numerical Analysis PY - 2015 SP - 1643 EP - 1657 VL - 49 IS - 6 PB - EDP-Sciences UR - https://www.numdam.org/articles/10.1051/m2an/2015035/ DO - 10.1051/m2an/2015035 LA - en ID - M2AN_2015__49_6_1643_0 ER -
%0 Journal Article %A De Pascale, Luigi %T Optimal transport with Coulomb cost. Approximation and duality %J ESAIM: Mathematical Modelling and Numerical Analysis %D 2015 %P 1643-1657 %V 49 %N 6 %I EDP-Sciences %U https://www.numdam.org/articles/10.1051/m2an/2015035/ %R 10.1051/m2an/2015035 %G en %F M2AN_2015__49_6_1643_0
De Pascale, Luigi. Optimal transport with Coulomb cost. Approximation and duality. ESAIM: Mathematical Modelling and Numerical Analysis , Optimal Transport, Tome 49 (2015) no. 6, pp. 1643-1657. doi : 10.1051/m2an/2015035. https://www.numdam.org/articles/10.1051/m2an/2015035/
A general duality theorem for the monge–kantorovich transport problem. Stud. Math. 209 (2012) 2. | DOI | MR | Zbl
, and ,A. Braides, Gamma-convergence for Beginners. Vol. 22. Oxford University Press, Oxford (2002). | MR | Zbl
Optimal-transport formulation of electronic density-functional theory. Phys. Rev. A 85 (2012) 062502. | DOI
, and ,On a class of multidimensional optimal transportation problems. J. Convex Anal. 10 (2003) 517–530. | MR | Zbl
,Optimal transportation for the determinant. ESAIM: COCV 14 (2008) 678–698. | Numdam | MR | Zbl
and ,M. Colombo, L. De Pascale and S. Di Marino, Multimarginal optimal transport maps for 1-dimensional repulsive costs. Canad. J. Math. (2013). | MR
M. Colombo and S. Di Marino, Equality between monge and kantorovich multimarginal problems with coulomb cost. Ann. Mat. Pura Appl. (2013) 1–14. | MR
Density functional theory and optimal transportation with coulomb cost. Commun. Pure Appl. Math. 66 (2013) 548–599. | DOI | MR | Zbl
, and ,
G. Dal Maso, An introduction to
N-density representability and the optimal transport limit of the hohenberg−kohn functional. J. Chem. Phys. 139 (2013) 164–109. | DOI
, , , and ,Optimal maps for the multidimensional monge−kantorovich problem. Comm. Pure Appl. Math. 51 (1998) 23–45. | DOI | MR | Zbl
and ,A self-dual polar factorization for vector fields. Comm. Pure Appl. Math. 66 (2013) 905–933. | DOI | MR | Zbl
and ,Density functional theory for strongly-interacting electrons: perspectives for physics and chemistry. Phys. Chem. Chem. Phys. 12 (2010) 14405–14419. | DOI
and ,Density-functional theory for strongly interacting electrons. Phys. Rev. Lett. 103 (2009) 166402. | DOI
, and ,Problème de monge pour n probabilités. C. R. Math. 334 (2002) 793–795. | DOI | MR | Zbl
,Inhomogeneous electron gas. Phys. Rev. 136 (1964) B864. | DOI | MR
and ,Duality theorems for marginal problems. Probab. Theory Relat. Fields 67 (1984) 399–432. | MR | Zbl
,Self-consistent equations including exchange and correlation effects. Phys. Rev. 140 (1965) A1133. | DOI | MR
and ,Density functionals for coulomb systems. Int J. Quantum Chem. 24 (1983) 243–277. | DOI
.Kantorovich dual solution for strictly correlated electrons in atoms and molecules. Phys. Rev. B 87 (2013) 125106. | DOI
and ,Uniqueness and monge solutions in the multimarginal optimal transportation problem. SIAM J. Math. Anal. 43 (2011) 2758–2775. | DOI | MR | Zbl
,On the local structure of optimal measures in the multi-marginal optimal transportation problem. Calc. Var. Partial Differ. Equ. 43 (2012) 529–536. | DOI | MR | Zbl
,S.T. Rachev and L. Rüschendorf, Mass transportation problems. Probab. Appl. Springer-Verlag (1998), Vol. I. | MR
Strong-interaction limit of density-functional theory. Phys. Rev. A 60 (1999) 4387. | DOI
,Strictly correlated electrons in density-functional theory: A general formulation with applications to spherical densities. Phys. Rev. A 75 (2007) 042511. | DOI
, and ,Strictly correlated electrons in density-functional theory. Phys. Rev. A 59 (1999) 51. | DOI
, and ,- p-Wasserstein barycenters, Nonlinear Analysis, Volume 251 (2025), p. 113687 | DOI:10.1016/j.na.2024.113687
- The Strong-Interaction Limit of Density Functional Theory, Density Functional Theory (2023), p. 183 | DOI:10.1007/978-3-031-22340-2_4
- Classical Density Functional Theory: Representability and Universal Bounds, Journal of Statistical Physics, Volume 190 (2023) no. 4 | DOI:10.1007/s10955-023-03086-7
- Universal diagonal estimates for minimizers of the Levy–Lieb functional, Letters in Mathematical Physics, Volume 113 (2023) no. 5 | DOI:10.1007/s11005-023-01729-0
- On deterministic solutions for multi-marginal optimal transport with Coulomb cost, Communications on Pure Applied Analysis, Volume 21 (2022) no. 4, p. 1189 | DOI:10.3934/cpaa.2022015
- Improved Lieb–Oxford bound on the indirect and exchange energies, Letters in Mathematical Physics, Volume 112 (2022) no. 5 | DOI:10.1007/s11005-022-01584-5
- Relaxed multi-marginal costs and quantization effects, Annales de l'Institut Henri Poincaré C, Analyse non linéaire, Volume 38 (2021) no. 1, p. 61 | DOI:10.1016/j.anihpc.2020.06.004
- Marginals with Finite Repulsive Cost, Canadian Journal of Mathematics, Volume 72 (2020) no. 2, p. 373 | DOI:10.4153/s0008414x18000664
- Cyclically monotone non-optimal N-marginal transport plans and Smirnov-type decompositions for N-flows, ESAIM: Control, Optimisation and Calculus of Variations, Volume 26 (2020), p. 120 | DOI:10.1051/cocv/2020050
- Semidefinite Relaxation of Multimarginal Optimal Transport for Strictly Correlated Electrons in Second Quantization, SIAM Journal on Scientific Computing, Volume 42 (2020) no. 6, p. B1462 | DOI:10.1137/20m1310977
- Next-order asymptotic expansion for N-marginal optimal transport with Coulomb and Riesz costs, Advances in Mathematics, Volume 344 (2019), p. 137 | DOI:10.1016/j.aim.2018.12.008
- Duality theory for multi-marginal optimal transport with repulsive costs in metric spaces, ESAIM: Control, Optimisation and Calculus of Variations, Volume 25 (2019), p. 62 | DOI:10.1051/cocv/2018062
- On c-cyclical monotonicity for optimal transport problem with Coulomb cost, European Journal of Applied Mathematics, Volume 30 (2019) no. 6, p. 1210 | DOI:10.1017/s0956792519000111
- Continuity of Multimarginal Optimal Transport with Repulsive Cost, SIAM Journal on Mathematical Analysis, Volume 51 (2019) no. 4, p. 2903 | DOI:10.1137/19m123943x
- Continuity and Estimates for Multimarginal Optimal Transportation Problems with Singular Costs, Applied Mathematics Optimization, Volume 78 (2018) no. 1, p. 185 | DOI:10.1007/s00245-017-9403-7
- Optimal transport with Coulomb cost and the semiclassical limit of density functional theory, Journal de l’École polytechnique — Mathématiques, Volume 4 (2017), p. 909 | DOI:10.5802/jep.59
- Counterexamples in multimarginal optimal transport with Coulomb cost and spherically symmetric data, Mathematical Models and Methods in Applied Sciences, Volume 26 (2016) no. 06, p. 1025 | DOI:10.1142/s021820251650024x
Cité par 17 documents. Sources : Crossref