A discontinuous Galerkin reduced basis element method for elliptic problems
ESAIM: Mathematical Modelling and Numerical Analysis , Tome 50 (2016) no. 2, pp. 337-360.

We propose and analyse a new discontinuous reduced basis element method for the approximation of parametrized elliptic PDEs in partitioned domains. The method is built upon an offline stage (parameter independent) and an online (parameter dependent) one. In the offline stage we build a non-conforming (discontinuous) global reduced space as a direct sum of local basis functions generated independently on each subdomain. In the online stage, for any given value of the parameter, the approximate solution is obtained by ensuring the weak continuity of the fluxes and of the solution itself thanks to a discontinuous Galerkin approach. The new method extends and generalizes the methods introduced in [L. Iapichino, Ph.D. thesis, EPF Lausanne (2012); L. Iapichino, A. Quarteroni and G. Rozza, Comput. Methods Appl. Mech. Eng. 221–222 (2012) 63–82]. We prove its stability and convergence properties, as well as the spectral properties of the associated online algebraic system. We also propose a two-level preconditioner for the online problem which exploits the pre-existing decomposition of the domain and is based upon the introduction of a global coarse finite element space. Numerical tests are performed to verify our theoretical results.

Reçu le :
DOI : 10.1051/m2an/2015045
Classification : 65N12, 65N30
Mots-clés : Reduced basis element method, discontinuous Galerkin, domain decomposition
Antonietti, Paola F. 1 ; Pacciarini, Paolo 1 ; Quarteroni, Alfio 1, 2

1 MOX–Modeling and Scientific Computing, Dipartimento di Matematica, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milano, Italy.
2 CMCS, École Polytechnique Fédérale de Lausanne (EPFL), Station 8, 1015 Lausanne, Switzerland.
@article{M2AN_2016__50_2_337_0,
     author = {Antonietti, Paola F. and Pacciarini, Paolo and Quarteroni, Alfio},
     title = {A discontinuous {Galerkin} reduced basis element method for elliptic problems},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis },
     pages = {337--360},
     publisher = {EDP-Sciences},
     volume = {50},
     number = {2},
     year = {2016},
     doi = {10.1051/m2an/2015045},
     mrnumber = {3482546},
     zbl = {1343.65132},
     language = {en},
     url = {http://archive.numdam.org/articles/10.1051/m2an/2015045/}
}
TY  - JOUR
AU  - Antonietti, Paola F.
AU  - Pacciarini, Paolo
AU  - Quarteroni, Alfio
TI  - A discontinuous Galerkin reduced basis element method for elliptic problems
JO  - ESAIM: Mathematical Modelling and Numerical Analysis 
PY  - 2016
SP  - 337
EP  - 360
VL  - 50
IS  - 2
PB  - EDP-Sciences
UR  - http://archive.numdam.org/articles/10.1051/m2an/2015045/
DO  - 10.1051/m2an/2015045
LA  - en
ID  - M2AN_2016__50_2_337_0
ER  - 
%0 Journal Article
%A Antonietti, Paola F.
%A Pacciarini, Paolo
%A Quarteroni, Alfio
%T A discontinuous Galerkin reduced basis element method for elliptic problems
%J ESAIM: Mathematical Modelling and Numerical Analysis 
%D 2016
%P 337-360
%V 50
%N 2
%I EDP-Sciences
%U http://archive.numdam.org/articles/10.1051/m2an/2015045/
%R 10.1051/m2an/2015045
%G en
%F M2AN_2016__50_2_337_0
Antonietti, Paola F.; Pacciarini, Paolo; Quarteroni, Alfio. A discontinuous Galerkin reduced basis element method for elliptic problems. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 50 (2016) no. 2, pp. 337-360. doi : 10.1051/m2an/2015045. http://archive.numdam.org/articles/10.1051/m2an/2015045/

F. Albrecht, B. Haasdonk, S. Kaulmann and M. Ohlberger, The localized reduced basis multiscale method. In vol. 1 of Algoritmy 2012 − Proc. of contributed papers and posters, edited by A. Handlovičová, Z. Minarechová and D. Devčovič. Publishing House of STU (2012) 393–403. | Zbl

P.F. Antonietti and B. Ayuso, Schwarz domain decomposition preconditioners for discontinuous Galerkin approximations of elliptic problems: Non-overlapping case. ESAIM: M2AN 41 (2007) 21–54. | DOI | Numdam | MR | Zbl

P.F. Antonietti and P. Houston, A class of domain decomposition preconditioners for hp-discontinuous Galerkin finite element methods. J. Sci. Comput. 46 (2011) 124–149. | DOI | MR | Zbl

P.F. Antonietti, S. Giani and P. Houston, Domain decomposition preconditioners for discontinuous Galerkin methods for elliptic problems on complicated domains. J. Sci. Comput. 60 (2014) 203–227. | DOI | MR | Zbl

P.F. Antonietti, A. Manzoni, P Pacciarini and A. Quarteroni, A posteriori error control for discontinuous Galerkin reduced basis element approximations of parametrized elliptic pdes. In preparation (2016).

D.N. Arnold, An interior penalty finite element method with discontinuous elements. SIAM J. Numer. Anal. 19 (1982) 742–760. | DOI | MR | Zbl

D.N. Arnold, F. Brezzi, B. Cockburn and L.D. Marini, Unified analysis of discontinuous Galerkin methods for elliptic problems. SIAM J. Numer. Anal. 39 (2002) 1749–1779. | DOI | MR | Zbl

M. Barrault, Y. Maday, N.C. Nguyen and A.T. Patera, An “empirical interpolation” method: application to efficient reduced-basis discretization of partial differential equations. C. R. Math. Acad. Sci. Paris 339 (2004) 667–672. | DOI | MR | Zbl

J.H. Bramble and J. Xu, Some estimates for a weighted L 2 projection. Math. Comput. 56 (1991) 463–476. | MR | Zbl

H. Brezis, Functional analysis, Sobolev spaces and partial differential equations. Universitext. Springer, New York (2011). | MR | Zbl

F. Brezzi, M. Manzini, M. Marini, P. Pietra and A. Russo, Discontinuous finite elements for diffusion problems. In Francesco Brioschi (1824−1897) Convegno di Studi Matematici, October 22-23, 1997 Ist. Lomb. Acc. Sc. Lett. Incontro di studio N. 16 (1999) 197–217.

C. Canuto and A. Quarteroni, Approximation results for orthogonal polynomials in Sobolev spaces. Math. Comput. 38 (1982) 67–86. | DOI | MR | Zbl

Y. Chen, J.S. Hesthaven and Y. Maday, A Seamless Reduced Basis Element Method for 2D Maxwell’s Problem: An Introduction. In Spectral and High Order Methods for Partial Differential Equations. Springer (2011) 141–152. | MR | Zbl

Y. Efendiev, J. Galvis, R. Lazarov, M. Moon and M. Sarkis, Generalized multiscale finite element method. Symmetric interior penalty coupling. J. Comput. Phys. 255 (2013) 1–15. | DOI | MR | Zbl

J.L. Eftang and A.T. Patera, Port reduction in parametrized component static condensation: Approximation and a posteriori error estimation. Int. J. Numer. Methods Eng. 96 (2013) 269–302. | DOI | MR | Zbl

J.L. Eftang, A.T. Patera and E.M. Rønquist, An “hp” certified reduced basis method for parametrized elliptic partial differential equations. SIAM J. Sci. Comput. 32 (2010) 3170–3200. | DOI | MR | Zbl

K. Gao, E. Chung, R. Gibson, S. Fu and Y. Efendiev, Generalized Multiscale Finite-Element Method (GMsFEM) for elastic wave propagation in heterogeneous, anisotropic media. Available at (2014). | arXiv | MR

G.H. Golub and C.F. Van Loan, Matrix computations. Johns Hopkins Studies in the Mathematical Sciences, 4th edition. Johns Hopkins University Press, Baltimore, MD (2013). | MR | Zbl

D.B.P. Huynh, D.J. Knezevic and A.T. Patera, A static condensation Reduced Basis Element method : approximation and a posteriori error estimation. ESAIM: M2AN 47 (2013) 213–251. | DOI | Numdam | MR | Zbl

D.B.P. Huynh, D.J. Knezevic and A.T. Patera, A static condensation Reduced Basis Element method: Complex problems. Comput. Methods Appl. Mech. Eng. 259 (2013) 197–216. | DOI | MR | Zbl

D.B.P. Huynh, N.C. Nguyen, A.T. Patera and G. Rozza, Rapid reliable solution of the parametrized partial differential equations of continuum mechanics and transport. Available at: http://augustine.mit.edu (2008).

L. Iapichino, Reduced Basis Methods for the Solution of Parametrized PDEs in Repetitive and Complex Networks with Application to CFD. Ph.D. thesis, EPF Lausanne (2012).

L. Iapichino, A. Quarteroni and G. Rozza, Reduced basis method and domain decomposition for elliptic problems in networks and complex parametrized geometries. Comput. Math. Appl. 71 (2016) 408–430. | DOI | MR | Zbl

L. Iapichino, A. Quarteroni and G. Rozza, A reduced basis hybrid method for the coupling of parametrized domains represented by fluidic networks. Comput. Methods Appl. Mech. Eng. 221–222 (2012) 63–82. | DOI | MR | Zbl

S. Kaulmann, M. Ohlberger and B. Haasdonk, A new local reduced basis discontinuous Galerkin approach for heterogeneous multiscale problems. C. R. Math. Acad. Sci. Paris 349 (2011) 1233–1238. | DOI | MR | Zbl

A.E. Løvgren, Y. Maday and E.M. Rønquist, A reduced basis element method for the steady Stokes problem. ESAIM: M2AN 40 (2006) 529–552 | DOI | Numdam | MR | Zbl

A.E. Løvgren, Y. Maday and E.M. Rønquist. A reduced basis element method for the steady Stokes problem: Application to hierarchical flow systems. Model. Identif. Control 27 (2006) 79–94. | DOI | Numdam | MR

Y. Maday and E.M. Rønquist, A Reduced-Basis Element method. J. Sci. Comput. 17 (2002) 447–459. | DOI | MR | Zbl

Y. Maday and E.M. Rønquist, The reduced basis element method: Application to a thermal fin problem. SIAM J. Sci. Comput. 26 (2005) 240–258. | DOI | MR | Zbl

A.T. Patera and G. Rozza, Reduced Basis Approximation and A Posteriori Error Estimation for Parametrized Partial Differential Equations. Version 1.0, Copyright MIT 2006-2007, to appear in (tentative rubric) MIT Pappalardo Graduate Monographs in Mechanical Engineering. Available at: http://augustine.mit.edu (2006).

A. Quarteroni, Numerical models for differential problems. Vol. 8 of MS&A. Model. Simul. Appl. 2nd edition. Springer, Milan (2014). | MR | Zbl

A. Quarteroni, G. Rozza and A. Manzoni, Certified reduced basis approximation for parametrized partial differential equations and applications. J. Math. Ind. 1 (2011) 3. | DOI | MR | Zbl

A. Quarteroni, A. Manzoni and F. Negri, Reduced Basis Methods for Partial Differential Equations. An Introduction (2016). | MR | Zbl

G. Rozza, D.B.P. Huynh and A.T. Patera, Reduced basis approximation and a posteriori error estimation for affinely parametrized elliptic coercive partial differential equations: application to transport and continuum mechanics. Arch. Comput. Methods Eng. State of the Art Reviews 15 (2008) 229–275. | DOI | MR | Zbl

R. Stenberg, Mortaring by a method of J.A. Nitsche, In Computational Mechanics (Buenos Aires, 1998). Centro Internac. Métodos Numér. Ing., Barcelona (1998). | MR

A. Toselli and O. Widlund, Domain Decomposition Methods – Algorithms and Theory. Vol. 34 of Springer Ser. Comput. Math. Springer-Verlag, Berlin (2005). | MR | Zbl

H. Wang and S. Xiang, On the convergence rates of Legendre approximation. Math. Comput. 81 (2012) 861–877. | DOI | MR | Zbl

M.F. Wheeler, An elliptic collocation-finite element method with interior penalties. SIAM J. Numer. Anal. 15 (1978) 152–161. | DOI | MR | Zbl

Cité par Sources :