We introduce and analyze a virtual element method (VEM) for the Helmholtz problem with approximating spaces made of products of low order VEM functions and plane waves. We restrict ourselves to the 2D Helmholtz equation with impedance boundary conditions on the whole domain boundary. The main ingredients of the plane wave VEM scheme are: (i) a low order VEM space whose basis functions, which are associated to the mesh vertices, are not explicitly computed in the element interiors; (ii) a proper local projection operator onto the plane wave space; (iii) an approximate stabilization term. A convergence result for the
DOI : 10.1051/m2an/2015066
Mots-clés : Helmholtz equation, virtual element method, plane wave basis functions, error analysis, duality estimates
@article{M2AN_2016__50_3_783_0, author = {Perugia, Ilaria and Pietra, Paola and Russo, Alessandro}, title = {A plane wave virtual element method for the {Helmholtz} problem}, journal = {ESAIM: Mathematical Modelling and Numerical Analysis }, pages = {783--808}, publisher = {EDP-Sciences}, volume = {50}, number = {3}, year = {2016}, doi = {10.1051/m2an/2015066}, zbl = {1343.65137}, mrnumber = {3507273}, language = {en}, url = {https://www.numdam.org/articles/10.1051/m2an/2015066/} }
TY - JOUR AU - Perugia, Ilaria AU - Pietra, Paola AU - Russo, Alessandro TI - A plane wave virtual element method for the Helmholtz problem JO - ESAIM: Mathematical Modelling and Numerical Analysis PY - 2016 SP - 783 EP - 808 VL - 50 IS - 3 PB - EDP-Sciences UR - https://www.numdam.org/articles/10.1051/m2an/2015066/ DO - 10.1051/m2an/2015066 LA - en ID - M2AN_2016__50_3_783_0 ER -
%0 Journal Article %A Perugia, Ilaria %A Pietra, Paola %A Russo, Alessandro %T A plane wave virtual element method for the Helmholtz problem %J ESAIM: Mathematical Modelling and Numerical Analysis %D 2016 %P 783-808 %V 50 %N 3 %I EDP-Sciences %U https://www.numdam.org/articles/10.1051/m2an/2015066/ %R 10.1051/m2an/2015066 %G en %F M2AN_2016__50_3_783_0
Perugia, Ilaria; Pietra, Paola; Russo, Alessandro. A plane wave virtual element method for the Helmholtz problem. ESAIM: Mathematical Modelling and Numerical Analysis , Special Issue – Polyhedral discretization for PDE, Tome 50 (2016) no. 3, pp. 783-808. doi : 10.1051/m2an/2015066. https://www.numdam.org/articles/10.1051/m2an/2015066/
A stream virtual element formulation of the Stokes problem on polygonal meshes. SIAM J. Numer. Anal. 52 (2014) 386–404. | DOI | MR | Zbl
, , and ,The nonconforming virtual element method. To appear in Special issue – Polyhedral discretization for PDE. ESAIM: M2AN 50 (2016). DOI: | DOI | Numdam | MR
, and ,Is the pollution effect of the FEM avoidable for the Helmholtz equation? SIAM Rev. 42 (2000) 451–484. | MR | Zbl
and ,A virtual element method with arbitrary regularity. IMA J. Numer. Anal. 34 (2014) 759–781. | DOI | MR | Zbl
, and ,Basic principles of virtual element methods. Math. Models Methods Appl. Sci. 23 (2013) 199–214. | DOI | MR | Zbl
, , , , and ,Virtual elements for linear elasticity problems. SIAM J. Numer. Anal. 51 (2013) 794–812. | DOI | MR | Zbl
, and ,
L. Beirão da Veiga, F. Brezzi, L.D. Marini and A. Russo,
Mixed virtual element methods for general second order elliptic problems. To appear in Special issue – Polyhedral discretization for PDE. ESAIM M2AN 50 (2016). DOI: | DOI
, , and ,Virtual element methods for general second order elliptic problems on polygonal meshes. Math. Models Methods Appl. Sci. 26 (2016) 729–750. | DOI | MR | Zbl
, , and ,The Hitchhiker’s guide to the virtual element method. Math. Models Methods Appl. Sci. 24 (2014) 1541–1573. | DOI | MR | Zbl
, , and ,A virtual element method for elastic and inelastic problems on polytope meshes. Comput. Methods Appl. Mech. Eng. 295 (2015) 327–346. | DOI | MR | Zbl
, and ,The virtual element method for discrete fracture network simulations. Comput. Methods Appl. Mech. Eng. 280 (2014) 135–156. | DOI | MR | Zbl
, , and ,Bounds in the Neumann problem for second order uniformly elliptic operators. Pacific J. Math 12 (1962) 823–833. | DOI | MR | Zbl
and ,Virtual element methods for plate bending problems. Comput. Methods Appl. Mech. Eng. 253 (2013) 455–462. | DOI | MR | Zbl
and ,F. Brezzi and L.D. Marini, Virtual Element and Discontinuous Galerkin Methods. In Recent Developments in Discontinuous Galerkin Finite Element Methods for Partial Differential Equations. Springer (2014) 209–221. | MR | Zbl
Basic principles of mixed virtual element methods. ESAIM: M2AN 48 (2014) 1227–1240. | DOI | Numdam | MR | Zbl
, and ,Error estimates for the Ultra Weak Variational Formulation of the Helmholtz equation. ESAIM: M2AN 42 (2008) 925–940. | DOI | Numdam | MR | Zbl
and ,O. Cessenat, Application d’une nouvelle formulation variationnelle aux équations d’ondes harmoniques, Problèmes de Helmholtz 2D et de Maxwell 3D. Ph.D. thesis, Université Paris IX Dauphine (1996).
Application of an ultra weak variational formulation of elliptic PDEs to the two-dimensional Helmholtz equation. SIAM J. Numer. Anal. 35 (1998) 255–299. | DOI | MR | Zbl
and ,The wave based method: An overview of 15 years of research. Innovations in Wave Modelling. Wave Motion 51 (2014) 550–565. | DOI | MR | Zbl
, , , , , , , , and ,W. Desmet, A wave based prediction technique for coupled vibro-acoustic analysis. Ph.D. thesis, KU Leuven, Belgium, 1998.
The discontinuous enrichment method. Comput. Methods Appl. Mech. Eng. 190 (2001) 6455–6479. | DOI | MR | Zbl
, and ,A discontinuous Galerkin method with Lagrange multipliers for the solution of Helmholtz problems in the mid-frequency regime. Comput. Methods Appl. Mech. Eng. 192 (2003) 1389–1419. | DOI | MR | Zbl
, and ,Discontinuous Galerkin methods with plane waves for time-harmonic problems. J. Comput. Phys. 225 (2007) 1961–1984. | DOI | MR | Zbl
,Exact integration of polynomial-exponential products with application to wave-based numerical methods. Comm. Numer. Methods Eng. 25 (2009) 237–246. | DOI | MR | Zbl
,On the virtual element method for three-dimensional linear elasticity problems on arbitrary polyhedral meshes. Comput. Methods Appl. Mech. Eng. 282 (2014) 132–160. | DOI | MR | Zbl
, and ,C.J. Gittelson, Plane wave discontinuous Galerkin methods. Master’s thesis, SAM-ETH Zürich, Switzerland (2008).
Plane wave discontinuous Galerkin methods: analysis of the
R. Hiptmair, A. Moiola and I. Perugia, Approximation by plane waves. Technical report 2009-27, SAM-ETH Zürich, Switzerland (2009). Available at http://www.sam.math.ethz.ch/reports/2009/27.
Plane wave discontinuous Galerkin methods for the 2D Helmholtz equation: analysis of the
Trefftz discontinuous Galerkin methods for acoustic scattering on locally refined meshes. Appl. Numer. Math. 79 (2014) 79–91. | DOI | MR | Zbl
, and ,R. Hiptmair, A. Moiola and I. Perugia, A Survey of Trefftz Methods for the Helmholtz Equation. “Building Bridges: Connections and Challenges in Modern Approaches to Numerical Partial Differential Equations”. Edited by G.R. Barrenechea, A. Cangiani, E.H. Geogoulis. In Lect. Notes Comput. Sci. Eng. Springer. Preprint [math.NA] (2015). | arXiv | MR
R. Hiptmair, A. Moiola and I. Perugia, Plane wave discontinuous Galerkin Methods: Exponential convergence of the
Solution of Helmholtz problems by knowledge-based fem. Comp. Ass. Mech. Eng. Sci. 4 (1997) 397–416. | Zbl
and ,Bounds of the Poincaré constant with respect to the problem of star-shaped membrane regions. Z. Angew. Math. Phys. 29 (1978) 670–683. | MR | Zbl
and ,On Trefftz and weak Trefftz discontinuous Galerkin approaches for medium-frequency acoustics. Comput. Methods Appl. Mech. Eng. 278 (2014) 729–743. | DOI | MR | Zbl
and ,New perspectives on polygonal and polyhedral finite element methods. Math. Models Methods Appl. Sci. 24 (2014) 1665–1699. | DOI | MR | Zbl
, and .J.M. Melenk, On Generalized Finite Element Methods. Ph.D. thesis, University of Maryland, 1995. | MR
The partition of unity finite element method: basic theory and applications. Comput. Methods Appl. Mech. Eng. 139 (1996) 289–314. | DOI | MR | Zbl
and ,Approximation with harmonic and generalized harmonic polynomials in the partition of unity method. Comp. Ass. Mech. Eng. Sci. 4 (1997) 607–632. | Zbl
and ,Wavenumber explicit convergence analysis for Galerkin discretizations of the Helmholtz equation. SIAM J. Numer. Anal. 49 (2011) 1210–1243. | DOI | MR | Zbl
and ,A. Moiola, Trefftz-discontinuous Galerkin methods for time-harmonic wave problems. Ph.D. thesis, Seminar for applied mathematics, ETH Zürich (2011). Available at http://e-collection.library.ethz.ch/view/eth:4515.
Plane wave approximation of homogeneous Helmholtz solutions. Z. Angew. Math. Phys. 62 (2011) 809–837. | DOI | MR | Zbl
, and ,A least squares method for the Helmholtz equation. Comput. Methods Appl. Mech. Eng. 175 (1999) 121–136. | DOI | MR | Zbl
and ,An optimal Poincaré inequality for convex domains. Arch. Rational Mech. Anal. 5 (1960) 286–292. | DOI | MR | Zbl
and ,The multiscale VTCR approach applied to acoustics problems. J. Comput. Acoust. 16 (2008) 487–505. | DOI | Zbl
, and ,Least-squares Trefftz-type elements for the Helmholtz equation. Int. J. Numer. Methods Eng. 41 (1998) 831–849. | DOI | MR | Zbl
,Conforming polygonal finite elements. Int. J. Numer. Methods Eng. 61 (2004) 2045–2066. | DOI | MR | Zbl
and ,Three-dimensional discontinuous Galerkin elements with plane waves and Lagrange multipliers for the solution of mid-frequency Helmholtz problems. Int. J. Numer. Methods Eng. 66 (2006) 796–815. | DOI | MR | Zbl
and ,- Numerical simulation and error estimation of the Davey-Stewartson equations with virtual element method, Applied Mathematics and Computation, Volume 489 (2025), p. 129146 | DOI:10.1016/j.amc.2024.129146
- The virtual element method for a contact problem with wear and unilateral constraint, Applied Numerical Mathematics, Volume 206 (2024), p. 29 | DOI:10.1016/j.apnum.2024.08.004
- When rational functions meet virtual elements: the lightning virtual element method, Calcolo, Volume 61 (2024) no. 3 | DOI:10.1007/s10092-024-00585-1
- Phase-Informed Discontinuous Galerkin Method for Extremely High-Frequency Wave Modeling, IEEE Transactions on Antennas and Propagation, Volume 72 (2024) no. 8, p. 6614 | DOI:10.1109/tap.2024.3427389
- An enriched virtual element method for 2D‐3C generalized membrane shell model on surface, International Journal for Numerical Methods in Engineering, Volume 125 (2024) no. 8 | DOI:10.1002/nme.7432
- The virtual element method on polygonal pixel–based tessellations, Journal of Computational Physics, Volume 518 (2024), p. 113334 | DOI:10.1016/j.jcp.2024.113334
- Interior estimates for the virtual element method, Numerische Mathematik, Volume 156 (2024) no. 3, p. 1163 | DOI:10.1007/s00211-024-01408-9
- A mixed virtual element method for nearly incompressible linear elasticity equations, Advances in Computational Mathematics, Volume 49 (2023) no. 1 | DOI:10.1007/s10444-023-10013-7
- Virtual element method for linear elastic clamped plate model, Applied Numerical Mathematics, Volume 191 (2023), p. 1 | DOI:10.1016/j.apnum.2023.04.020
- The interior penalty virtual element method for the fourth-order elliptic hemivariational inequality, Communications in Nonlinear Science and Numerical Simulation, Volume 127 (2023), p. 107547 | DOI:10.1016/j.cnsns.2023.107547
- A cVEM-DG space-time method for the dissipative wave equation, Computers Mathematics with Applications, Volume 152 (2023), p. 341 | DOI:10.1016/j.camwa.2023.10.022
- Embedded Trefftz discontinuous Galerkin methods, International Journal for Numerical Methods in Engineering, Volume 124 (2023) no. 17, p. 3637 | DOI:10.1002/nme.7258
- Resolving vibro‐acoustics in poroelastic media via a multiscale virtual element method, International Journal for Numerical Methods in Engineering, Volume 124 (2023) no. 7, p. 1510 | DOI:10.1002/nme.7173
- On Arbitrarily Regular Conforming Virtual Element Methods for Elliptic Partial Differential Equations, Spectral and High Order Methods for Partial Differential Equations ICOSAHOM 2020+1, Volume 137 (2023), p. 3 | DOI:10.1007/978-3-031-20432-6_1
- Adaptive virtual element methods with equilibrated fluxes, Applied Numerical Mathematics, Volume 173 (2022), p. 249 | DOI:10.1016/j.apnum.2021.11.015
- Conforming virtual element approximations of the two-dimensional Stokes problem, Applied Numerical Mathematics, Volume 181 (2022), p. 176 | DOI:10.1016/j.apnum.2022.06.002
- Virtual element method for a frictional contact problem with normal compliance, Communications in Nonlinear Science and Numerical Simulation, Volume 107 (2022), p. 106125 | DOI:10.1016/j.cnsns.2021.106125
- Virtual elements for sound propagation in complex poroelastic media, Computational Mechanics, Volume 69 (2022) no. 1, p. 347 | DOI:10.1007/s00466-021-02078-2
- Extended virtual element method for two-dimensional linear elastic fracture, Computer Methods in Applied Mechanics and Engineering, Volume 390 (2022), p. 114352 | DOI:10.1016/j.cma.2021.114352
- Weakly imposed Dirichlet boundary conditions for 2D and 3D Virtual Elements, Computer Methods in Applied Mechanics and Engineering, Volume 400 (2022), p. 115454 | DOI:10.1016/j.cma.2022.115454
- Polyhedral mesh quality indicator for the Virtual Element Method, Computers Mathematics with Applications, Volume 114 (2022), p. 151 | DOI:10.1016/j.camwa.2022.03.042
- Stabilization of the nonconforming virtual element method, Computers Mathematics with Applications, Volume 116 (2022), p. 25 | DOI:10.1016/j.camwa.2021.10.009
- Conditioning analysis for discrete Helmholtz problems, Computers Mathematics with Applications, Volume 118 (2022), p. 171 | DOI:10.1016/j.camwa.2022.05.016
- Partial differential equations on hypergraphs and networks of surfaces: Derivation and hybrid discretizations, ESAIM: Mathematical Modelling and Numerical Analysis, Volume 56 (2022) no. 2, p. 505 | DOI:10.1051/m2an/2022011
- Penalty Virtual Element Method for the 3D Incompressible Flow on Polyhedron Mesh, Entropy, Volume 24 (2022) no. 8, p. 1129 | DOI:10.3390/e24081129
- A priori error analysis of virtual element method for contact problem, Fixed Point Theory and Algorithms for Sciences and Engineering, Volume 2022 (2022) no. 1 | DOI:10.1186/s13663-022-00720-z
- A virtual element generalization on polygonal meshes of the Scott-Vogelius finite element method for the 2-D Stokes problem, Journal of Computational Dynamics, Volume 9 (2022) no. 2, p. 207 | DOI:10.3934/jcd.2021020
- Convergence Analysis of Virtual Element Method for Nonlinear Nonlocal Dynamic Plate Equation, Journal of Scientific Computing, Volume 91 (2022) no. 1 | DOI:10.1007/s10915-022-01794-y
- VEM and the Mesh, The Virtual Element Method and its Applications, Volume 31 (2022), p. 1 | DOI:10.1007/978-3-030-95319-5_1
- The Nonconforming Trefftz Virtual Element Method: General Setting, Applications, and Dispersion Analysis for the Helmholtz Equation, The Virtual Element Method and its Applications, Volume 31 (2022), p. 363 | DOI:10.1007/978-3-030-95319-5_9
- The Conforming Virtual Element Method for Polyharmonic and Elastodynamics Problems: A Review, The Virtual Element Method and its Applications, Volume 31 (2022), p. 411 | DOI:10.1007/978-3-030-95319-5_10
- The Virtual Element Method for the Coupled System of Magneto-Hydrodynamics, The Virtual Element Method and its Applications, Volume 31 (2022), p. 499 | DOI:10.1007/978-3-030-95319-5_12
- Virtual element methods for the three-field formulation of time-dependent linear poroelasticity, Advances in Computational Mathematics, Volume 47 (2021) no. 1 | DOI:10.1007/s10444-020-09826-7
- Arbitrary-order intrinsic virtual element method for elliptic equations on surfaces, Calcolo, Volume 58 (2021) no. 3 | DOI:10.1007/s10092-021-00418-5
- Virtual Element Method for Nonlinear Time-Dependent Convection-Diffusion-Reaction Equation, Computational Mathematics and Modeling, Volume 32 (2021) no. 3, p. 376 | DOI:10.1007/s10598-021-09537-8
- Enrichment of the nonconforming virtual element method with singular functions, Computer Methods in Applied Mechanics and Engineering, Volume 385 (2021), p. 114024 | DOI:10.1016/j.cma.2021.114024
- A Virtual Element Method coupled with a Boundary Integral Non Reflecting condition for 2D exterior Helmholtz problems, Computers Mathematics with Applications, Volume 84 (2021), p. 296 | DOI:10.1016/j.camwa.2021.01.002
- A virtual element method for the von Kármán equations, ESAIM: Mathematical Modelling and Numerical Analysis, Volume 55 (2021) no. 2, p. 533 | DOI:10.1051/m2an/2020085
- Conforming and nonconforming virtual element methods for a Kirchhoff plate contact problem, IMA Journal of Numerical Analysis, Volume 41 (2021) no. 2, p. 1496 | DOI:10.1093/imanum/draa005
- THE IMPACT OF ENVIRONMENTAL CONSTRUCTION ON THE SPATIAL CONFIGURATION OF TRADITIONAL IRANIAN HOUSING (CASE STUDY: COMPARISON OF DEZFUL AND BOROUJERD TRADITIONAL HOUSING), JOURNAL OF ARCHITECTURE AND URBANISM, Volume 45 (2021) no. 1, p. 50 | DOI:10.3846/jau.2021.14230
- A Virtual Element Method for the Steklov Eigenvalue Problem Allowing Small Edges, Journal of Scientific Computing, Volume 88 (2021) no. 2 | DOI:10.1007/s10915-021-01555-3
- A review on arbitrarily regular conforming virtual element methods for second- and higher-order elliptic partial differential equations, Mathematical Models and Methods in Applied Sciences, Volume 31 (2021) no. 14, p. 2825 | DOI:10.1142/s0218202521500627
- The Mixed Virtual Element Method for the Richards Equation, Polyhedral Methods in Geosciences, Volume 27 (2021), p. 259 | DOI:10.1007/978-3-030-69363-3_7
- Virtual Elements for the Transmission Eigenvalue Problem on Polytopal Meshes, SIAM Journal on Scientific Computing, Volume 43 (2021) no. 4, p. A2425 | DOI:10.1137/20m1347887
- Extension of the nonconforming Trefftz virtual element method to the Helmholtz problem with piecewise constant wave number, Applied Numerical Mathematics, Volume 155 (2020), p. 160 | DOI:10.1016/j.apnum.2019.04.005
- Virtual element for the buckling problem of Kirchhoff–Love plates, Computer Methods in Applied Mechanics and Engineering, Volume 360 (2020), p. 112687 | DOI:10.1016/j.cma.2019.112687
- A fully discrete virtual element scheme for the Cahn–Hilliard equation in mixed form, Computer Physics Communications, Volume 246 (2020), p. 106870 | DOI:10.1016/j.cpc.2019.106870
- Relationship between the vertex-centered linearity-preserving scheme and the lowest-order virtual element method for diffusion problems on star-shaped polygons, Computers Mathematics with Applications, Volume 79 (2020) no. 11, p. 3117 | DOI:10.1016/j.camwa.2020.01.009
- A
time-stepping virtual element method for linear wave equations on polygonal meshes, Electronic Research Archive, Volume 28 (2020) no. 2, p. 911 | DOI:10.3934/era.2020048 - A priori and a posteriori error estimates for a virtual element spectral analysis for the elasticity equations, IMA Journal of Numerical Analysis, Volume 40 (2020) no. 1, p. 322 | DOI:10.1093/imanum/dry063
- Virtual element methods for the obstacle problem, IMA Journal of Numerical Analysis, Volume 40 (2020) no. 1, p. 708 | DOI:10.1093/imanum/dry055
- A virtual element method for a nonlocal FitzHugh–Nagumo model of cardiac electrophysiology, IMA Journal of Numerical Analysis, Volume 40 (2020) no. 2, p. 1544 | DOI:10.1093/imanum/drz001
- Error estimation and mesh adaptivity for the virtual element method based on recovery by compatibility in patches, International Journal for Numerical Methods in Engineering, Volume 121 (2020) no. 19, p. 4374 | DOI:10.1002/nme.6438
- A Posteriori Error Estimates of Virtual Element Method for a Simplified Friction Problem, Journal of Scientific Computing, Volume 83 (2020) no. 3 | DOI:10.1007/s10915-020-01242-9
- The Nonconforming Virtual Element Method for a Stationary Stokes Hemivariational Inequality with Slip Boundary Condition, Journal of Scientific Computing, Volume 85 (2020) no. 3 | DOI:10.1007/s10915-020-01333-7
- Polynomial preserving virtual elements with curved edges, Mathematical Models and Methods in Applied Sciences, Volume 30 (2020) no. 08, p. 1555 | DOI:10.1142/s0218202520500311
- Computational high frequency scattering from high-contrast heterogeneous media, Mathematics of Computation, Volume 89 (2020) no. 326, p. 2649 | DOI:10.1090/mcom/3529
- Extended virtual element method for the torsion problem of cracked prismatic beams, Meccanica, Volume 55 (2020) no. 4, p. 637 | DOI:10.1007/s11012-019-01073-5
- FETI-DP for the Three Dimensional Virtual Element Method, SIAM Journal on Numerical Analysis, Volume 58 (2020) no. 3, p. 1556 | DOI:10.1137/18m1233303
- Introduction, BEM-based Finite Element Approaches on Polytopal Meshes, Volume 130 (2019), p. 1 | DOI:10.1007/978-3-030-20961-2_1
- A nonconforming Trefftz virtual element method for the Helmholtz problem: Numerical aspects, Computer Methods in Applied Mechanics and Engineering, Volume 347 (2019), p. 445 | DOI:10.1016/j.cma.2018.12.039
- Extended virtual element method for the Laplace problem with singularities and discontinuities, Computer Methods in Applied Mechanics and Engineering, Volume 356 (2019), p. 571 | DOI:10.1016/j.cma.2019.07.028
- The Virtual Element Method with curved edges, ESAIM: Mathematical Modelling and Numerical Analysis, Volume 53 (2019) no. 2, p. 375 | DOI:10.1051/m2an/2018052
- The method of polarized traces for the 3D Helmholtz equation, GEOPHYSICS, Volume 84 (2019) no. 4, p. T313 | DOI:10.1190/geo2018-0153.1
- The nonconforming virtual element method for elasticity problems, Journal of Computational Physics, Volume 378 (2019), p. 394 | DOI:10.1016/j.jcp.2018.11.004
- A multiscale virtual element method for elliptic problems in heterogeneous porous media, Journal of Computational Physics, Volume 388 (2019), p. 394 | DOI:10.1016/j.jcp.2019.03.031
- A nonconforming Trefftz virtual element method for the Helmholtz problem, Mathematical Models and Methods in Applied Sciences, Volume 29 (2019) no. 09, p. 1619 | DOI:10.1142/s0218202519500301
- A posteriori error estimation and adaptivity in hp virtual elements, Numerische Mathematik, Volume 143 (2019) no. 1, p. 139 | DOI:10.1007/s00211-019-01054-6
- The Divergence-Free Nonconforming Virtual Element for the Stokes Problem, SIAM Journal on Numerical Analysis, Volume 57 (2019) no. 6, p. 2730 | DOI:10.1137/18m1200762
- VEM for Inelastic Solids, Advances in Computational Plasticity, Volume 46 (2018), p. 381 | DOI:10.1007/978-3-319-60885-3_18
- Virtual element method for simplified friction problem, Applied Mathematics Letters, Volume 85 (2018), p. 125 | DOI:10.1016/j.aml.2018.06.002
- Virtual element method for two-dimensional linear elasticity problem in mixed weakly symmetric formulation, Applied Mathematics and Computation, Volume 328 (2018), p. 1 | DOI:10.1016/j.amc.2018.01.023
- Exploring high-order three dimensional virtual elements: Bases and stabilizations, Computers Mathematics with Applications, Volume 75 (2018) no. 9, p. 3379 | DOI:10.1016/j.camwa.2018.02.005
- A multigrid algorithm for the p-version of the virtual element method, ESAIM: Mathematical Modelling and Numerical Analysis, Volume 52 (2018) no. 1, p. 337 | DOI:10.1051/m2an/2018007
- Virtual element method for second-order elliptic eigenvalue problems, IMA Journal of Numerical Analysis, Volume 38 (2018) no. 4, p. 2026 | DOI:10.1093/imanum/drx063
- Non-conforming Harmonic Virtual Element Method:
h - and p -Versions, Journal of Scientific Computing, Volume 77 (2018) no. 3, p. 1874 | DOI:10.1007/s10915-018-0797-4 - The fully nonconforming virtual element method for biharmonic problems, Mathematical Models and Methods in Applied Sciences, Volume 28 (2018) no. 02, p. 387 | DOI:10.1142/s0218202518500100
- A virtual element method for the transmission eigenvalue problem, Mathematical Models and Methods in Applied Sciences, Volume 28 (2018) no. 14, p. 2803 | DOI:10.1142/s0218202518500616
- A New Heterogeneous Multiscale Method for the Helmholtz Equation with High Contrast, Multiscale Modeling Simulation, Volume 16 (2018) no. 1, p. 385 | DOI:10.1137/16m1108820
- Virtual Elements for the Reissner‐Mindlin plate problem, Numerical Methods for Partial Differential Equations, Volume 34 (2018) no. 4, p. 1117 | DOI:10.1002/num.22248
- Ill‐conditioning in the virtual element method: Stabilizations and bases, Numerical Methods for Partial Differential Equations, Volume 34 (2018) no. 4, p. 1258 | DOI:10.1002/num.22257
- Exponential convergence of the hp virtual element method in presence of corner singularities, Numerische Mathematik, Volume 138 (2018) no. 3, p. 581 | DOI:10.1007/s00211-017-0921-7
- , SEG Technical Program Expanded Abstracts 2018 (2018), p. 3898 | DOI:10.1190/segam2018-2996158.1
- Virtual Elements for the Navier–Stokes Problem on Polygonal Meshes, SIAM Journal on Numerical Analysis, Volume 56 (2018) no. 3, p. 1210 | DOI:10.1137/17m1132811
- A Family of Three-Dimensional Virtual Elements with Applications to Magnetostatics, SIAM Journal on Numerical Analysis, Volume 56 (2018) no. 5, p. 2940 | DOI:10.1137/18m1169886
- Localized Orthogonal Decomposition for two-scale Helmholtz-typeproblems, AIMS Mathematics, Volume 2 (2017) no. 3, p. 458 | DOI:10.3934/math.2017.2.458
- BDDC and FETI-DP for the virtual element method, Calcolo, Volume 54 (2017) no. 4, p. 1565 | DOI:10.1007/s10092-017-0242-3
- Exact integration scheme for planewave-enriched partition of unity finite element method to solve the Helmholtz problem, Computer Methods in Applied Mechanics and Engineering, Volume 317 (2017), p. 619 | DOI:10.1016/j.cma.2017.01.001
- Virtual Element approximation of 2D magnetostatic problems, Computer Methods in Applied Mechanics and Engineering, Volume 327 (2017), p. 173 | DOI:10.1016/j.cma.2017.08.013
- On the virtual element method for topology optimization on polygonal meshes: A numerical study, Computers Mathematics with Applications, Volume 74 (2017) no. 5, p. 1091 | DOI:10.1016/j.camwa.2017.05.025
- Mimetic finite difference methods for Hamiltonian wave equations in 2D, Computers Mathematics with Applications, Volume 74 (2017) no. 5, p. 1123 | DOI:10.1016/j.camwa.2017.05.022
- A posteriori error estimates for a Virtual Element Method for the Steklov eigenvalue problem, Computers Mathematics with Applications, Volume 74 (2017) no. 9, p. 2172 | DOI:10.1016/j.camwa.2017.05.016
- Stability analysis for the virtual element method, Mathematical Models and Methods in Applied Sciences, Volume 27 (2017) no. 13, p. 2557 | DOI:10.1142/s021820251750052x
- The virtual element method in 50 lines of MATLAB, Numerical Algorithms, Volume 75 (2017) no. 4, p. 1141 | DOI:10.1007/s11075-016-0235-3
- A virtual element method for the acoustic vibration problem, Numerische Mathematik, Volume 136 (2017) no. 3, p. 725 | DOI:10.1007/s00211-016-0855-5
- Learning dominant wave directions for plane wave methods for high-frequency Helmholtz equations, Research in the Mathematical Sciences, Volume 4 (2017) no. 1 | DOI:10.1186/s40687-017-0098-9
- Virtual Element Method for fourth order problems: L2-estimates, Computers Mathematics with Applications, Volume 72 (2016) no. 8, p. 1959 | DOI:10.1016/j.camwa.2016.02.001
- Preface, ESAIM: Mathematical Modelling and Numerical Analysis, Volume 50 (2016) no. 3, p. 633 | DOI:10.1051/m2an/2016034
- The nonconforming virtual element method for plate bending problems, Mathematical Models and Methods in Applied Sciences, Volume 26 (2016) no. 09, p. 1671 | DOI:10.1142/s021820251650041x
Cité par 99 documents. Sources : Crossref