In the present paper we introduce a Virtual Element Method (VEM) for the approximate solution of general linear second order elliptic problems in mixed form, allowing for variable coefficients. We derive a theoretical convergence analysis of the method and develop a set of numerical tests on a benchmark problem with known solution.
DOI : 10.1051/m2an/2015067
Mots-clés : Mixed Virtual Element Methods, elliptic problems
@article{M2AN_2016__50_3_727_0, author = {Beir\~ao da Veiga, Louren\c{c}o and Brezzi, Franco and Marini, Luisa Donatella and Russo, Alessandro}, title = {Mixed virtual element methods for general second order elliptic problems on polygonal meshes}, journal = {ESAIM: Mathematical Modelling and Numerical Analysis }, pages = {727--747}, publisher = {EDP-Sciences}, volume = {50}, number = {3}, year = {2016}, doi = {10.1051/m2an/2015067}, mrnumber = {3507271}, zbl = {1343.65134}, language = {en}, url = {http://archive.numdam.org/articles/10.1051/m2an/2015067/} }
TY - JOUR AU - Beirão da Veiga, Lourenço AU - Brezzi, Franco AU - Marini, Luisa Donatella AU - Russo, Alessandro TI - Mixed virtual element methods for general second order elliptic problems on polygonal meshes JO - ESAIM: Mathematical Modelling and Numerical Analysis PY - 2016 SP - 727 EP - 747 VL - 50 IS - 3 PB - EDP-Sciences UR - http://archive.numdam.org/articles/10.1051/m2an/2015067/ DO - 10.1051/m2an/2015067 LA - en ID - M2AN_2016__50_3_727_0 ER -
%0 Journal Article %A Beirão da Veiga, Lourenço %A Brezzi, Franco %A Marini, Luisa Donatella %A Russo, Alessandro %T Mixed virtual element methods for general second order elliptic problems on polygonal meshes %J ESAIM: Mathematical Modelling and Numerical Analysis %D 2016 %P 727-747 %V 50 %N 3 %I EDP-Sciences %U http://archive.numdam.org/articles/10.1051/m2an/2015067/ %R 10.1051/m2an/2015067 %G en %F M2AN_2016__50_3_727_0
Beirão da Veiga, Lourenço; Brezzi, Franco; Marini, Luisa Donatella; Russo, Alessandro. Mixed virtual element methods for general second order elliptic problems on polygonal meshes. ESAIM: Mathematical Modelling and Numerical Analysis , Special Issue – Polyhedral discretization for PDE, Tome 50 (2016) no. 3, pp. 727-747. doi : 10.1051/m2an/2015067. http://archive.numdam.org/articles/10.1051/m2an/2015067/
Equivalent projectors for virtual element methods. Comput. Math. Appl. 66 (2013) 376–391. | DOI | MR | Zbl
, , , and ,A stream virtual element formulation of the Stokes problem on polygonal meshes. SIAM J. Numer. Anal. 52 (2014) 386–404. | DOI | MR | Zbl
, , and ,Mimetic discretizations of elliptic control problems. J. Sci. Comput. 56 (2013) 14–27. | DOI | MR | Zbl
, and ,Unified analysis of discontinuous Galerkin methods for elliptic problems. SIAM J. Numer. Anal. 39 (2001) 1749–1779. | DOI | MR | Zbl
, , and ,M. Arroyo and M. Ortiz, Local maximum-entropy approximation schemes, Meshfree methods for partial differential equations III. Vol. 57 of Lect. Notes Comput. Sci. Engrg. Springer, Berlin (2007) 1–16. | MR | Zbl
Generalized finite element methods: their performance and their relation to mixed methods. SIAM J. Numer. Anal. 20 (1983) 510–536. | DOI | MR | Zbl
and ,The partition of unity method. Int. J. Numer. Methods Engrg. 40 (1997) 727–758. | DOI | MR | Zbl
and ,Generalized finite element methods – main ideas, results and perspective. Int. J. Comput. Methods 01 (2004) 67–103. | DOI | Zbl
, and ,A residual based error estimator for the mimetic finite difference method. Numer. Math. 108 (2008) 387–406. | DOI | MR | Zbl
,A higher-order formulation of the mimetic finite difference method. SIAM J. Sci. Comput. 31 (2008) 732–760. | DOI | MR | Zbl
, and ,A virtual element method with arbitrary regularity. IMA J. Numer. Anal. 34 (2014) 759–781. | DOI | MR | Zbl
and ,Convergence analysis of the high-order mimetic finite difference method. Numer. Math. 113 (2009) 325–356. | DOI | MR | Zbl
, and ,Mimetic finite difference method for the Stokes problem on polygonal meshes. J. Comput. Phys. 228 (2009) 7215–7232. | DOI | MR | Zbl
, , and ,Arbitrary-order nodal mimetic discretizations of elliptic problems on polygonal meshes. SIAM J. Numer. Anal. 49 (2011) 1737–1760. | DOI | MR | Zbl
, and ,Basic principles of virtual element methods. Math. Models Methods Appl. Sci. 23 (2013) 199–214. | DOI | MR | Zbl
, , , , and ,Virtual elements for linear elasticity problems. SIAM J. Numer. Anal. 51 (2013) 794–812. | DOI | MR | Zbl
, and ,The hitchhiker’s guide to the virtual element method. Math. Models Methods Appl. Sci. 24 (2014) 1541–1573. | DOI | MR | Zbl
, , and ,L. Beirão da Veiga, K. Lipnikov and G. Manzini, The mimetic finite difference method for elliptic problems. Vol. 11 of MS&A. Model. Simul. Appl.. Springer–Verlag (2014). | MR | Zbl
L. Beirão da Veiga, F. Brezzi, L.D. Marini and A. Russo, H(div) and H(curl)-conforming virtual element methods. Numer. Math. Doi: (2015). | DOI | MR
Virtual Element Methods for general second order-elliptic problems on polygonal meshes. Math. Models Methods Appl. Sci. 26 (2016) 729. | DOI | MR | Zbl
, , and ,The virtual element method for discrete fracture network simulations. Comput. Methods Appl. Mech. Engrg. 280 (2014) 135–156. | DOI | MR | Zbl
, , and ,Polygonal finite element methods for contact-impact problems on non-conformal meshes. Comp. Methods Appl. Mech. Engrg. 269 (2014) 198–221. | DOI | MR | Zbl
, and ,A displacement-based finite element formulation for general polyhedra using harmonic shape functions. Int. J. Numer. Methods Engrg. 97 (2014) 1–31. | DOI | MR | Zbl
,P.B. Bochev and J.M. Hyman, Principles of Mimetic Discretizations of Differential Operators. Compatible Spatial Discretizations. Vol. 142 of IMA Volumes Math. Appl. Springer, New York (2006) 89–119. | MR | Zbl
Analysis of compatible discrete operator schemes for elliptic problems on polyhedral meshes. ESAIM: M2AN 48 (2014) 553–581. | DOI | Numdam | MR | Zbl
and ,Virtual element methods for plate bending problems. Comput. Methods Appl. Mech. Engrg. 253 (2013) 455–462. | DOI | MR | Zbl
and ,A family of mimetic finite difference methods on polygonal and polyhedral meshes. Math. Models Methods Appl. Sci. 15 (2005) 1533–1551. | DOI | MR | Zbl
, and ,Convergence of mimetic finite difference method for diffusion problems on polyhedral meshes with curved faces. Math. Models Methods Appl. Sci. 16 (2006) 275–297. | DOI | MR | Zbl
, and ,A new discretization methodology for diffusion problems on generalized polyhedral meshes. Comput. Methods Appl. Mech. Engrg. 196 (2007) 3682–3692. | DOI | MR | Zbl
, , and ,Mimetic finite differences for elliptic problems. ESAIM: M2AN 43 (2009) 277–295. | DOI | Numdam | MR | Zbl
, and ,The mimetic finite difference method for the 3d magnetostatic field problems on polyhedral meshes. J. Comput. Phys. 230 (2011) 305–328. | DOI | MR | Zbl
, , and ,Basic principles of mixed virtual element methods. ESAIM: M2AN 48 (2014) 1227–1240. | DOI | Numdam | MR | Zbl
, and ,Hourglass stabilization and the virtual element method. Int. J. Numer. Methods Engrg. 102 (2015) 404–436. | DOI | MR | Zbl
, , and ,The extended finite element method (XFEM) for solidification problems. Int. J. Numer. Methods Engrg. 53 (2002) 1959–1977. | DOI | MR | Zbl
, and ,Polygonal finite elements for finite elasticity. Int. J. Numer. Methods Engrg. 101 (2015) 305–328. | DOI | MR | Zbl
, , and ,P.G. Ciarlet, The finite element method for elliptic problems. Vol. 4 of Stud. Math. Appl. North-Holland Publishing Co., Amsterdam-New York-Oxford (1978). | MR | Zbl
B. Cockburn, The hybridizable discontinuous Galerkin methods. In Vol. IV of Proc. of the International Congress of Mathematicians. Hindustan Book Agency, New Delhi (2010), 2749–2775. | MR | Zbl
Unified hybridization of discontinuous Galerkin, mixed, and continuous Galerkin methods for second order elliptic problems. SIAM J. Numer. Anal. 47 (2009) 1319–1365. | DOI | MR | Zbl
, and ,Superconvergent discontinuous Galerkin methods for second-order elliptic problems. Math. Comp. 78 (2009) 1–24. | DOI | MR | Zbl
, and ,A projection-based error analysis of HDG methods. Math. Comp. 79 (2010) 1351–1367. | DOI | MR | Zbl
, and ,D. Di Pietro and A. Ern, Mathematical aspects of discontinuous Galerkin methods. Vol. 69 of Math. Appl. Springer, Heidelberg (2012). | MR | Zbl
D. Di Pietro and A. Ern, A family of arbitrary-order mixed methods for heterogeneous anisotropic diffusion on general meshes. Available at (2013). | HAL
An arbitrary-order and compact-stencil discretization of diffusion on general meshes based on local reconstruction operators. Comput. Methods Appl. Math. 14 (2014) 461–472. | DOI | MR | Zbl
, and ,A hybrid high-order locking-free method for linear elasticity on general meshes. Comput. Methods Appl. Mech. Engrg 283 (2015) 1–21. | DOI | MR | Zbl
and ,Hybrid high-order methods for variable-diffusion problems on general meshes. C. R. Acad. Sci. Paris, Ser. I 353 (2015), 31–34. | DOI | MR | Zbl
and ,Global estimates for mixed methods for second order elliptic equations. Math. Comp. 44 (1985) 39–52. | DOI | MR | Zbl
, and ,Finite volume schemes for diffusion equations: introduction to and review of modern methods. Math. Models Methods Appl. Sci. 24 (2014) 1575–1619. | DOI | MR | Zbl
,A unified approach to mimetic finite difference, hybrid finite volume and mixed finite volume methods. Math. Models Methods Appl. Sci. 20 (2010) 265–295. | DOI | MR | Zbl
, , and ,Gradient schemes: a generic framework for the discretisation of linear, nonlinear and nonlocal elliptic and parabolic equations. Math. Models Methods Appl. Sci. 23 (2013) 2395–2432. | DOI | MR | Zbl
, , and ,Centroidal Voronoi tessellations: applications and algorithms. SIAM Rev. 41 (1999) 637–676. | DOI | MR | Zbl
, and ,Gradient bounds for Wachspress coordinates on polytopes. SIAM J. Numer. Anal. 52 (2014) 515–532. | DOI | MR | Zbl
, and ,Mean value coordinates in 3d. Comput. Aided Geom. Design 22 (2005) 623–631. | DOI | MR | Zbl
, and ,A general construction of barycentric coordinates over convex polygons. Adv. Comput. Math. 24 (2006) 311–331. | DOI | Zbl
, and ,The extended/generalized finite element method: an overview of the method and its applications. Int. J. Numer. Methods Engrg. 84 (2010) 253–304. | DOI | MR | Zbl
and ,A.L. Gain, Polytope-based topology optimization using a mimetic-inspired method. Ph.D. thesis, University of Illinois at Urbana-Champaign, 2013.
On the Virtual Element Method for three-dimensional linear elasticity problems on arbitrary polyhedral meshes. Comput. Methods Appl. Mech. Engrg. 282 (2014) 132–160. | DOI | MR | Zbl
, and ,An extended finite element method/Lagrange multiplier based approach for fluid-structure interaction. Comput. Methods Appl. Mech. Engrg. 197 (2008) 1699–1714. | DOI | MR | Zbl
and ,Mean value coordinates for arbitrary planar polygons. ACM Trans. Graph. 25 (2006) 1424–1441. | DOI
and ,The meshless finite element method. Int. J. Numer. Methods Engrg. 58 (2003) 893–912. | DOI | MR | Zbl
, , and ,Mimetic finite difference method. J. Comput. Phys. 257 (2014) 1163–1227. | DOI | MR | Zbl
, and ,New perspectives on polygonal and polyhedral finite element methods. Math. Models Methods Appl. Sci. 24 (2014) 1665–1699. | DOI | MR | Zbl
, and ,Polyhedral finite elements using harmonic basis functions. Comput. Graph. Forum 27 (2008) 1521–1529. | DOI
, , , and ,The partition of unity finite element method: basic theory and applications. Comp. Methods Appl. Mech. Engrg. 139 (1996) 289–314. | DOI | MR | Zbl
and ,Solving thermal and phase change problems with the extended finite element method. Comput. Mech. 28 (2002) 339–350. | DOI | Zbl
and ,S. Mohammadi, Extended Finite Element Method. Blackwell Publishing Ltd (2008).
A virtual element method for the Steklov eigenvalue problem. Math. Models Meth. Appl. Math. 25 (2015) 1421–1445. | DOI | MR | Zbl
, and ,Weak Galerkin methods for second order elliptic interface problems. J. Comput. Phys. 250 (2013) 106–125. | DOI | MR | Zbl
, , , and ,A weak Galerkin finite element method with polynomial reduction. J. Comput. Appl. Math. 285 (2015) 45–58. | DOI | MR | Zbl
, and ,An implicit high-order hybridizable discontinuous galerkin method for linear convection-diffusion equations. J. Comput. Phys. 228 (2009) 3232–3254. | DOI | MR | Zbl
, and ,An extended finite element method for dislocations in complex geometries: Thin films and nanotubes. Comp. Methods Appl. Mech. Engrg. 198 (2009) 1872–1886. | DOI | Zbl
, , and ,On three-dimensional modelling of crack growth using partition of unity methods. Special Issue: Association of Computational Mechanics United Kingdom. Comput. Struct. 88 (2010) 1391–1411. | DOI
, and ,Interpolation error estimates for mean value coordinates over convex polygons. Adv. Comput. Math. 39 (2013) 327–347. | DOI | MR | Zbl
, and ,FEM with Trefftz trial functions on polyhedral elements. J. Comp. Appl. Math. 263 (2014) 202–217. | DOI | MR | Zbl
and ,The extended finite element method for boundary layer problems in biofilm growth. Commun. App. Math. Comp. Sci. 2 (2007) 35–56. | DOI | MR | Zbl
, and ,Tetrahedral vs. polyhedral mesh size evaluation on flow velocity and wall shear stress for cerebral hemodynamic simulation. Comput. Meth. Biomech. Biomed. Engrg. 14 (2011) 9–22. | DOI
et al.,Construction of polygonal interpolants: a maximum entropy approach. Int. J. Numer. Methods Engrg. 61 (2004) 2159–2181. | DOI | MR | Zbl
,Conforming polygonal finite elements. Int. J. Numer. Methods Engrg. 61 (2004) 2045–2066. | DOI | MR | Zbl
and ,Recent advances in the construction of polygonal finite element interpolants. Arch. Comput. Methods Engrg. 13 (2006) 129–163. | DOI | MR | Zbl
and ,Extended finite element method for three-dimensional crack modelling. Int. J. Numer. Methods Eng. 48 (2000) 1549–1570. | DOI | Zbl
, , and ,Modeling holes and inclusions by level sets in the extended finite-element method. Comput. Methods Appl. Mech. Engrg. 190 (2001) 6183–6200. | DOI | MR | Zbl
, , and ,Topology optimization for designing patient-specific large craniofacial segmental bone replacements. Proc. Natl. Acad. Sci. USA 107 (2010) 13222–13227. | DOI
, , and ,Addressing integration error for polygonal finite elements through polynomial projections: a patch test connection. Math. Models Methods Appl. Sci. 24 (2014) 1701–1727. | DOI | MR | Zbl
and ,Polygonal finite elements for topology optimization: A unifying paradigm. Int. J. Numer. Methods Engrg. 82 (2010) 671–698. | DOI | Zbl
, , and ,L.M. Vigneron, J.G. Verly and S.K. Warfield, On extended finite element method (XFEM) for modelling of organ deformations associated with surgical cuts. Edited by S. Cotin and D. Metaxas, Medical Simulation, Vol. 3078 of Lect. Notes Comput. Sci. Springer, Berlin (2004).
E. Wachspress, Ed., A Rational Finite Element Basis. Vol. 114 of Math. Sci. Engrg. Academic Press, Inc., New York, London (1975). | MR | Zbl
The extended finite element method for rigid particles in stokes flow. Int. J. Numer. Methods Engrg. 51 (2001) 293–313. | DOI | MR | Zbl
, , and ,A weak Galerkin finite element method for second-order elliptic problems. J. Comput. Appl. Math. 241 (2013) 103–115. | DOI | MR | Zbl
and ,A weak Galerkin mixed finite element method for second order elliptic problems. Math. Comp. 83 (2014) 2101–2126. | DOI | MR | Zbl
and ,Barycentric coordinates for convex polytopes. Adv. Comput. Math. 6 (1996) 97–108. | DOI | MR | Zbl
,Cité par Sources :