Nondiffusive conservative schemes based on approximate Riemann solvers for Lagrangian gas dynamics
ESAIM: Mathematical Modelling and Numerical Analysis , Tome 50 (2016) no. 6, pp. 1887-1916.

In this paper, we present a conservative finite volume scheme for the gas dynamics in Lagrangian coordinates, which is fast and nondiffusive. By fast, we mean that it relies on an approximate Riemann solver, and hence the costly resolution of Riemann problems is avoided. By nondiffusive, we mean that the solution provided by the scheme is exact when the initial data is an isolated admissible shock, and discontinuities are sharply captured in general. The construction of the scheme uses two main tools: the approximate Riemann solver of [Ch. Chalons and F. Coquel, Math. Models Methods Appl. Sci. 24 (2014) 937–971.], which turns out to be exact on isolated admissible shocks, and a discontinuous reconstruction strategy, which consists in rebuilding entropy satisfying shocks inside some well chosen cells. Numerical experiments in 1D and 2D are proposed.

Reçu le :
Accepté le :
DOI : 10.1051/m2an/2016010
Classification : 35L65, 35L40, 65M08, 76N15, 76M12
Mots-clés : Conservative finite volume scheme, discontinuous reconstruction, approximate Riemann solver, non diffusive scheme, Sharp discontinuities
Aguillon, Nina 1 ; Chalons, Christophe 2

1 Sorbonne Universités, UPMC University Paris 06, CNRS, UMR 7598, Laboratoire Jacques-Louis Lions, 4 place 75005 Jussieu, Paris, France.
2 Laboratoire de Mathématiques de Versailles, UVSQ, CNRS, Université Paris-Saclay, 78035 Versailles, France.
@article{M2AN_2016__50_6_1887_0,
     author = {Aguillon, Nina and Chalons, Christophe},
     title = {Nondiffusive conservative schemes based on approximate {Riemann} solvers for {Lagrangian} gas dynamics},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis },
     pages = {1887--1916},
     publisher = {EDP-Sciences},
     volume = {50},
     number = {6},
     year = {2016},
     doi = {10.1051/m2an/2016010},
     zbl = {1388.76163},
     mrnumber = {3580126},
     language = {en},
     url = {http://archive.numdam.org/articles/10.1051/m2an/2016010/}
}
TY  - JOUR
AU  - Aguillon, Nina
AU  - Chalons, Christophe
TI  - Nondiffusive conservative schemes based on approximate Riemann solvers for Lagrangian gas dynamics
JO  - ESAIM: Mathematical Modelling and Numerical Analysis 
PY  - 2016
SP  - 1887
EP  - 1916
VL  - 50
IS  - 6
PB  - EDP-Sciences
UR  - http://archive.numdam.org/articles/10.1051/m2an/2016010/
DO  - 10.1051/m2an/2016010
LA  - en
ID  - M2AN_2016__50_6_1887_0
ER  - 
%0 Journal Article
%A Aguillon, Nina
%A Chalons, Christophe
%T Nondiffusive conservative schemes based on approximate Riemann solvers for Lagrangian gas dynamics
%J ESAIM: Mathematical Modelling and Numerical Analysis 
%D 2016
%P 1887-1916
%V 50
%N 6
%I EDP-Sciences
%U http://archive.numdam.org/articles/10.1051/m2an/2016010/
%R 10.1051/m2an/2016010
%G en
%F M2AN_2016__50_6_1887_0
Aguillon, Nina; Chalons, Christophe. Nondiffusive conservative schemes based on approximate Riemann solvers for Lagrangian gas dynamics. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 50 (2016) no. 6, pp. 1887-1916. doi : 10.1051/m2an/2016010. http://archive.numdam.org/articles/10.1051/m2an/2016010/

N. Aguillon, Capturing nonclassical shocks in nonlinear elastodynamic with a conservative finite volume scheme. Interfaces Free Bend. 18 (2016) 137–159. | DOI | MR | Zbl

N. Aguillon, A reconstruction scheme for the euler equations. Preprint hal-00967484 (2016).

F. Alouges, F. De Vuyst, G. Le Coq and E. Lorin, The reservoir technique: a way to make Godunov-type schemes zero or very low diffuse. Application to Colella-Glaz solver. Eur. J. Mech. B Fluids 27 (2008) 643–664. | DOI | MR | Zbl

M. Arora and Ph.L. Roe, On postshock oscillations due to shock capturing schemes in unsteady flows. J. Comput. Phys. 130 (1997) 25–40. | DOI | MR | Zbl

M.B. Friess, B. Boutin, F. Caetano, G. Faccanoni, S. Kokh, F. Lagoutière and L. Navoret, A second order anti-diffusive Lagrange-remap scheme for two-component flows. In CEMRACS’10 research achievements: numerical modeling of fusion. Vol. 32 of ESAIM Proc. 32 (2011) 149–162. | MR | Zbl

F. Bouchut, An antidiffusive entropy scheme for monotone scalar conservation laws. J. Sci. Comput. 21 (2004) 1–30. | DOI | MR | Zbl

F. Bouchut, A reduced stability condition for nonlinear relaxation to conservation laws. J. Hyperbolic Differ. Equ. 1 (2004) 149–170. | DOI | MR | Zbl

F. Bouchut and T. Morales De Luna, Semi-discrete entropy satisfying approximate Riemann solvers. The case of the Suliciu relaxation approximation. J. Sci. Comput. 41 (2009) 483–509. | DOI | MR | Zbl

B. Boutin, Ch. Chalons, F. Lagoutière and Ph.G. Lefloch, Convergent and conservative schemes for nonclassical solutions based on kinetic relations. I. Interfaces Free Bound. 10 (2008) 399–421. | DOI | MR | Zbl

Ch. Chalons and F. Coquel, Navier-stokes equations with several independent pressure laws and explicit predictor-corrector schemes. Numer. Math. 101 (2005) 451–478. | DOI | MR | Zbl

Ch. Chalons and F. Coquel, Modified Suliciu relaxation system and exact resolution of isolated shock waves. Math. Models Methods Appl. Sci. 24 (2014) 937–971. | DOI | MR | Zbl

Ch. Chalons and J.-F. Coulombel, Relaxation approximation of the euler equations. J. Math. Anal. Appl. 348 (2008) 872–893. | DOI | MR | Zbl

Ch. Chalons, M. Laura Delle Monache and P. Goatin, A conservative scheme for non-classical solutions to a strongly coupled pde-ode problem. Preprint hal-01070262 (2014). | MR

G. Qiang Chen, C. David Levermore and Tai-Ping Liu, Hyperbolic conservation laws with stiff relaxation terms and entropy. Comm. Pure Appl. Math. 47 (1994) 787–830. | DOI | MR | Zbl

F. Coquel, Shi Jin, Jian-Guo Liu and Li Wand, Entropic sub-cell shock capturing schemes via jin-xin relaxation and glimm front sampling for scalar hyperbolic conservation laws. Available at http://www.math.wisc.edu/˜jin/research.html (2016). | MR

B. Després and F. Lagoutière, Contact discontinuity capturing schemes for linear advection and compressible gas dynamics. J. Sci. Comput. 16 479–524 (2002), 2001. | DOI | MR | Zbl

E. Godlewski and P.-A. Raviart, Numerical approximation of hyperbolic systems of conservation laws, Vol. 118 of Appl. Math. Sci. Springer-Verlag, New York (1996). | MR | Zbl

S.K. Godunov, A difference method for numerical calculation of discontinuous solutions of the equations of hydrodynamics. Mat. Sb. (N.S.) 47 (1959) 271–306. | MR | Zbl

A. Harten, ENO schemes with subcell resolution. J. Comput. Phys. 83 (1989) 148–184. | DOI | MR | Zbl

Sh. Jin and Z.P. Xin, The relaxation schemes for systems of conservation laws in arbitrary space dimensions. Comm. Pure Appl. Math. 48 (1995) 235–276. | DOI | MR | Zbl

F. Lagoutière, Non-dissipative entropy satisfying discontinuous reconstruction schemes for hyperbolic conservation laws. Available at http://www.math.u-psud.fr/˜lagoutie/Papiers/disc˙reconst.pdf (2016).

F. Lagoutière, Stability of reconstruction schemes for scalar hyperbolic conservation laws. Commun. Math. Sci. 6 (2008) 57–70. | DOI | MR | Zbl

H. Li, Zh. Wang and De-Kang Mao, Numerically neither dissipative nor compressive scheme for linear advection equation and its application to the Euler system. J. Sci. Comput. 36 (2008) 285–331. | DOI | MR | Zbl

H. Nessyahu and E. Tadmor, Nonoscillatory central differencing for hyperbolic conservation laws. J. Comput. Phys. 87 (1990) 408–463. | DOI | MR | Zbl

I. Suliciu, On the thermodynamics of rate-type fluids and phase transitions. I. Rate-type fluids. Internat. J. Engrg. Sci. 36 (1998) 921–947. | DOI | MR | Zbl

E.F. Toro. Riemann solvers and numerical methods for fluid dynamics. 3rd edition. Springer-Verlag, Berlin (2009). A practical introduction. | MR | Zbl

B. Van Leer, Towards the ultimate conservative difference scheme. V. A second-order sequel to Godunov’s method. J. Comput. Phys. 135 (1997) 227–248. | DOI | MR | Zbl

Cité par Sources :