We apply the concept of an M-decomposition introduced in Part I to systematically construct local spaces defining superconvergent hybridizable discontinuous Galerkin methods, and their companion sandwiching mixed methods. This is done in the framework of steady-state diffusion problems for the h- and p-versions of the methods for general polygonal meshes in two-space dimensions.
Accepté le :
DOI : 10.1051/m2an/2016016
Mots clés : Hybridizable discontinuous Galerkin methods, superconvergence, polygonal meshes
@article{M2AN_2017__51_1_165_0, author = {Cockburn, Bernardo and Fu, Guosheng}, title = {Superconvergence by $M$-decompositions. {Part} {II:} {Construction} of two-dimensional finite elements}, journal = {ESAIM: Mathematical Modelling and Numerical Analysis }, pages = {165--186}, publisher = {EDP-Sciences}, volume = {51}, number = {1}, year = {2017}, doi = {10.1051/m2an/2016016}, mrnumber = {3601005}, zbl = {1412.65205}, language = {en}, url = {http://archive.numdam.org/articles/10.1051/m2an/2016016/} }
TY - JOUR AU - Cockburn, Bernardo AU - Fu, Guosheng TI - Superconvergence by $M$-decompositions. Part II: Construction of two-dimensional finite elements JO - ESAIM: Mathematical Modelling and Numerical Analysis PY - 2017 SP - 165 EP - 186 VL - 51 IS - 1 PB - EDP-Sciences UR - http://archive.numdam.org/articles/10.1051/m2an/2016016/ DO - 10.1051/m2an/2016016 LA - en ID - M2AN_2017__51_1_165_0 ER -
%0 Journal Article %A Cockburn, Bernardo %A Fu, Guosheng %T Superconvergence by $M$-decompositions. Part II: Construction of two-dimensional finite elements %J ESAIM: Mathematical Modelling and Numerical Analysis %D 2017 %P 165-186 %V 51 %N 1 %I EDP-Sciences %U http://archive.numdam.org/articles/10.1051/m2an/2016016/ %R 10.1051/m2an/2016016 %G en %F M2AN_2017__51_1_165_0
Cockburn, Bernardo; Fu, Guosheng. Superconvergence by $M$-decompositions. Part II: Construction of two-dimensional finite elements. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 51 (2017) no. 1, pp. 165-186. doi : 10.1051/m2an/2016016. http://archive.numdam.org/articles/10.1051/m2an/2016016/
Two-level mortar domain decomposition mortar preconditioners for heterogeneous elliptic problems. Comput. Methods Appl. Mech. Engrg. 292 (2015) 221–242. | DOI | MR | Zbl
and ,Quadrilateral H(div) finite elements. SIAM J. Numer. Anal. 42 (2005) 2429–2451 (electronic). | DOI | MR | Zbl
, and ,Superconvergence and H(div) projection for discontinuous Galerkin methods. Int. J. Numer. Meth. Fluids 42 (2003) 1043–1057. | DOI | MR | Zbl
and ,Basic principles of Virtual Element Methods. Math. Models Methods. Appl. Sci. 23 (2013) 199–214. | DOI | MR | Zbl
, , , , , and ,H(div) and H(curl)-conforming VEM. Numer. Math. 133 (2016) 303–332. | MR | Zbl
, , and ,D. Boffi, F. Brezzi and M. Fortin, Mixed Finite Element Methods and Applications. Springer-Verlag, New York (2013). | MR | Zbl
Two families of mixed finite elements for second order elliptic problems. Numer. Math. 47 (1985) 217–235. | DOI | MR | Zbl
, and ,Efficient rectangular mixed finite elements in two and three space variables. ESAIM: M2AN 21 (1987) 581–604. | DOI | Numdam | MR | Zbl
, , and ,Basic principles of mixed Virtual Element Methods. ESAIM: M2AN 48 (2014) 1227–1240. | DOI | Numdam | MR | Zbl
, and ,An a priori error analysis of the local discontinuous Galerkin method for elliptic problems. SIAM J. Numer. Anal. 38 (2000) 1676–1706. | DOI | MR | Zbl
, , and ,Analysis of variable-degree HDG methods for convection-diffusion equations. Part I: General nonconforming meshes. IMA J. Numer. Anal. 32 (2012) 1267–1293. | DOI | MR | Zbl
and ,Analysis of variable-degree HDG methods for convection-diffusion equations. Part II: Semimatching nonconforming meshes. Math. Comput. 83 (2014) 87–111. | DOI | MR | Zbl
and ,B. Cockburn, Static condensation, hybridization and the devising of the HGD methods, in LNCSE Series, Building Bridges: Connections and Challenges in Modern Approaches to Numerical Partial Differential Equations, edited by G.R. Barrenechea, F. Brezzi, A. Cagiani and E.H. Georgoulis. Durham Symposium, London Mathematical Society, Durham, UK (2014) 7–16. | MR
B. Cockburn and G. Fu, Superconvergence by M-decompositions. Part III: Construction of three-dimensional finite elements. To appear in ESAIM: M2AN (2016). | DOI | Numdam | MR
Commuting diagrams for the TNT elements on cubes. Math. Comput. 83 (2014) 603–633. | DOI | MR | Zbl
and ,A locally conservative LDG method for the incompressible Navier-Stokes equations. Math. Comput. 74 (2005) 1067–1095. | DOI | Zbl
, and ,Unified hybridization of discontinuous Galerkin, mixed and continuous Galerkin methods for second order elliptic problems. SIAM J. Numer. Anal. 47 (2009) 1319–1365. | DOI | Zbl
, and ,A projection-based error analysis of HDG methods. Math. Comput. 79 (2010) 1351–1367. | DOI | Zbl
, and ,Conditions for superconvergence of HDG methods for second-order elliptic problems. Math. Comput. 81 (2012) 1327–1353. | DOI | Zbl
, and ,B. Cockburn, G. Fu and F.-J. Sayas, Superconvergence by M-decompositions. Part I: General theory for HDG methods for diffusion. To appear in Math. Comput. (2016).
Bridging the Hybrid High-Order and Hybridizable Discontinuous Galerkin Methods. ESAIM: M2AM 50 (2016) 635–650. | DOI | Numdam | Zbl
, and ,An arbitrary-order and compact-stencil discretization of diffusion on general meshes based on local reconstruction operators. Comput. Methods Appl. Math. 14 (2014) 461–472. | DOI | Zbl
and and ,A hybrid high-order locking-free method for linear elasticity on general meshes, Comput. Methods Appl. Mech. Engrg. 283 (2015) 1–21. | DOI | Zbl
and ,An accurate H(div) flux reconstruction for discontinuous Galerkin approximations of elliptic problems. C. R. Math. Acad. Sci. Paris 345 (2007) 709–712. | DOI | Zbl
, and ,Error estimates for generalized barycentric interpolation. Adv. Comput. Math. 37 (2012) 417–439. | DOI | Zbl
, and ,New mixed finite element method on polygonal and polyhedral meshes. Russ. J. Numer. Anal. Math. Model. 18 (2003) 261–278. | DOI | Zbl
and ,Convergence analysis and error estimates for mixed finite element method on distorted meshes. J. Numer. Math. 13 (2005) 33–51. | DOI | Zbl
and ,C. Lehrenfeld, Hybrid Discontinuous Galerkin methods for solving incompressible flow problems. Diploma Thesis. Rheinisch-Westfälischen Technischen Hochschule, Aachen (2010).
New perspectives on polygonal and polyhedral finite element methods. Math. Models Methods Appl. Sci. 24 (2014) 1665–1699. | DOI | Zbl
, and ,A hybridized discontinuous Galerkin method with reduced stabilization. J. Sci. Comput. 65 (2015) 327–340. | DOI | Zbl
,P.A. Raviart and J.M. Thomas, A mixed finite element method for second order elliptic problems, in Mathematical Aspects of Finite Element Method, edited by I. Galligani and E. Magenes. Vol. 606 of Lect. Notes Math. Springer-Verlag, New York (1977) 292–315. | Zbl
A composite mixed finite element for hexahedral grids. SIAM J. Sci. Comput. 31 (2009) 2623–2645. | DOI | Zbl
, and ,Mixed finite element methods: implementation with one unknown per element, local flux expressions, positivity, polygonal meshes, and relations to other methods. Math. Models Methods Appl. Sci. 23 (2013) 803–838. | DOI | Zbl
and .Barycentric coordinates for convex polytopes. Adv. Comput. Math. 6 (1996) 97–108. | DOI | Zbl
,Cité par Sources :