We propose and analyze a new discretization technique for a linear-quadratic optimal control problem involving the fractional powers of a symmetric and uniformly elliptic second order operator; control constraints are considered. Since these fractional operators can be realized as the Dirichlet-to-Neumann map for a nonuniformly elliptic equation, we recast our problem as a nonuniformly elliptic optimal control problem. The rapid decay of the solution to this problem suggests a truncation that is suitable for numerical approximation. We propose a fully discrete scheme that is based on piecewise linear functions on quasi-uniform meshes to approximate the optimal control and first-degree tensor product functions on anisotropic meshes for the optimal state variable. We provide an a priori error analysis that relies on derived Hölder and Sobolev regularity estimates for the optimal variables and error estimates for a scheme that approximates fractional diffusion on curved domains; the latter being an extension of previous available results. The analysis is valid in any dimension. We conclude by presenting some numerical experiments that validate the derived error estimates.
Accepté le :
DOI : 10.1051/m2an/2016065
Mots-clés : Linear-quadratic optimal control problem, fractional diffusion, finite elements, anisotropic estimates, curved domains
@article{M2AN_2017__51_4_1473_0, author = {Ot\'arola, Enrique}, title = {A piecewise linear {FEM} for an optimal control problem of fractional operators: error analysis on curved domains}, journal = {ESAIM: Mathematical Modelling and Numerical Analysis }, pages = {1473--1500}, publisher = {EDP-Sciences}, volume = {51}, number = {4}, year = {2017}, doi = {10.1051/m2an/2016065}, zbl = {1377.49030}, language = {en}, url = {http://archive.numdam.org/articles/10.1051/m2an/2016065/} }
TY - JOUR AU - Otárola, Enrique TI - A piecewise linear FEM for an optimal control problem of fractional operators: error analysis on curved domains JO - ESAIM: Mathematical Modelling and Numerical Analysis PY - 2017 SP - 1473 EP - 1500 VL - 51 IS - 4 PB - EDP-Sciences UR - http://archive.numdam.org/articles/10.1051/m2an/2016065/ DO - 10.1051/m2an/2016065 LA - en ID - M2AN_2017__51_4_1473_0 ER -
%0 Journal Article %A Otárola, Enrique %T A piecewise linear FEM for an optimal control problem of fractional operators: error analysis on curved domains %J ESAIM: Mathematical Modelling and Numerical Analysis %D 2017 %P 1473-1500 %V 51 %N 4 %I EDP-Sciences %U http://archive.numdam.org/articles/10.1051/m2an/2016065/ %R 10.1051/m2an/2016065 %G en %F M2AN_2017__51_4_1473_0
Otárola, Enrique. A piecewise linear FEM for an optimal control problem of fractional operators: error analysis on curved domains. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 51 (2017) no. 4, pp. 1473-1500. doi : 10.1051/m2an/2016065. http://archive.numdam.org/articles/10.1051/m2an/2016065/
Anomalous diffusion in view of Einstein’s 1905 theory of Brownian motion. Physica A 356 (2005) 403–407. | DOI
and ,M. Abramowitz and I.A. Stegun, Handbook of mathematical functions with formulas, graphs, and mathematical tables. Vol. 55 of National Bureau of Standards Applied Mathematics Series (1964). | Zbl
A fractional Laplace equation: regularity of solutions and finite element approximations. SIAM J. Numer. Anal. 55 (2017) 472–495. | DOI | Zbl
and ,The two-phase fractional obstacle problem. SIAM J. Math. Anal. 47 (2015) 1879–1905. | DOI | Zbl
, and ,A FEM for an optimal control problem of fractional powers of elliptic operators. SIAM J. Control Optim. 53 (2015) 3432–3456. | DOI | Zbl
and ,A Space-Time Fractional Optimal Control Problem: Analysis and Discretization. SIAM J. Control Optim. 54 (2016) 1295–1328. | DOI | Zbl
, , and ,T. M. Atanacković, S. Pilipović, B. Stanković and D. Zorica, Fractional calculus with applications in mechanics. Mechanical Engineering and Solid Mechanics Series. ISTE, London. John Wiley & Sons, Inc., Hoboken, NJ (2014). | Zbl
On some critical problems for the fractional Laplacian operator. J. Differ. Eqs. 252 (2012) 6133–6162. | DOI | Zbl
, , and ,Optimal control of the convection-diffusion equation using stabilized finite element methods. Numer. Math. 106 (2007) 349–367. | DOI | Zbl
and ,A concave-convex elliptic problem involving the fractional Laplacian. Proc. R. Soc. Edinb., Sect. A 143 (2013) 39–71. | DOI | Zbl
, , and ,S.C. Brenner and L.R. Scott, The mathematical theory of finite element methods. Vol. 15 of Texts in Applied Mathematics, 3rd edn. Springer, New York (2008). | Zbl
An extension problem related to the fractional Laplacian. Commun. Partial Differ. Eqs. 32 (2007) 1245–1260. | DOI | MR | Zbl
and ,Drift diffusion equations with fractional diffusion and the quasi-geostrophic equation. Ann. Math. 171 (2010) 1903–1930. | DOI | MR | Zbl
and ,Fractional elliptic equations, Caccioppoli estimates and regularity. Ann. Inst. Henri Poincaré Anal. Non Linéaire 33 (2016) 767–807. | DOI | Numdam | MR | Zbl
and ,Regularity of radial extremal solutions for some non-local semilinear equations. Commun. Partial Differ. Eqs. 36 (2011) 1353–1384. | DOI | MR | Zbl
, , and ,L Chen, ifem: an integrated finite element methods package in matlab. Technical report, Technical Report, University of California at Irvine (2009).
A speculative study of -order fractional laplacian modeling of turbulence: Some thoughts and conjectures. Chaos 16 (2006) 1–11. | DOI | Zbl
,Residual type a posteriori error estimates for elliptic obstacle problems. Numer. Math. 84 (2000) 527–548. | DOI | MR | Zbl
and ,P.G. Ciarlet, The finite element method for elliptic problems. Vol. 4 of Studies in Mathematics and its Applications. North-Holland Publishing Co., Amsterdam-New York-Oxford (1978). | MR | Zbl
P.G. Ciarlet, Basic error estimates for elliptic problems. In Vol. II of Handbook of numerical analysis, II. North-Holland, Amsterdam (1991) 17–351. | MR | Zbl
Approximation by finite element functions using local regularization. RAIRO Anal. Numer. 9 (1975) 77–84. | Numdam | MR | Zbl
,Optimal distributed control of nonlocal steady diffusion problems. SIAM J. Control Optim. 52 (2014) 243–273. | DOI | MR | Zbl
and ,Identification of the diffusion parameter in nonlocal steady diffusion problems. Appl. Math. Optim. 73 (2016) 227–249. | DOI | MR | Zbl
and ,J. Duoandikoetxea, Fourier analysis. American Mathematical Society (2001). | MR | Zbl
Error estimates on anisotropic elements for functions in weighted Sobolev spaces. Math. Comp. 74 (2005) 1679–1706. | DOI | MR | Zbl
and ,A. Ern and J.-L. Guermond, Theory and practice of finite elements. Vol. 159 of Applied Mathematical Sciences. Springer-Verlag, New York (2004). | MR | Zbl
The local regularity of solutions of degenerate elliptic equations. Commun. Partial Differ. Eqs. 7 (1982) 77–116. | DOI | MR | Zbl
, and ,Concrete characterization of the domains of fractional powers of some elliptic differential operators of the second order. Proc. Japan Acad. 43 (1967) 82–86. | MR | Zbl
,Numerical approximation of the fractional Laplacian via -finite elements, with an application to image denoising. J. Sci. Comput. 65 (2015) 249–270. | DOI | MR | Zbl
and ,Weighted Sobolev spaces and embedding theorems. Trans. Amer. Math. Soc. 361 (2009) 3829–3850. | DOI | MR | Zbl
and ,P. Grisvard, Elliptic problems in nonsmooth domains. Vol. 24 of Monographs and Studies in Mathematics. Pitman (Advanced Publishing Program), Boston, MA (1985). | MR | Zbl
Finite element approximation of spectral problems with Neumann boundary conditions on curved domains. Math. Comp. 72 (2003) 1099–1115. | DOI | MR | Zbl
and ,Numerical methods for the fractional laplacian: A finite difference-quadrature approach. SIAM J. Numer. Anal. 52 (2014) 3056–3084. | DOI | MR | Zbl
and ,Numerical approximation of a fractional-in-space diffusion equation. I. Fract. Calc. Appl. Anal. 8 (2005) 323–341. | MR | Zbl
, , and ,Numerical approximation of a fractional-in-space diffusion equation. II. With nonhomogeneous boundary conditions. Fract. Calc. Appl. Anal. 9 (2006) 333–349. | MR | Zbl
, , and ,An integral equation theory for inhomogeneous molecular fluids: the reference interaction site model approach. J. Chem. Phys. 128 (2008) 034504. | DOI
, , and ,How to define reasonably weighted Sobolev spaces. Comment. Math. Univ. Carolin. 25 (1984) 537–554. | MR | Zbl
and ,Pricing of the American put under Lévy processes. Int. J. Theor. Appl. Finance 7 (2004) 303–335. | DOI | MR | Zbl
,J.-L. Lions and E. Magenes, Non-homogeneous boundary value problems and applications. In Vol. I. Springer-Verlag, New York (1972). | MR | Zbl
A priori error estimates for space-time finite element discretization of parabolic optimal control problems part ii: Problems with control constraints. SIAM J. Control Optim. 47 (2008) 1301–1329. | DOI | MR | Zbl
and ,Superconvergence properties of optimal control problems. SIAM J. Control Optim. 43 (2004) 970–985. | DOI | MR | Zbl
and ,Weighted norm inequalities for the Hardy maximal function. Trans. Amer. Math. Soc. 165 (1972) 207–226. | DOI | MR | Zbl
,R.H. Nochetto, K.G. Siebert and A. Veeser, Theory of adaptive finite element methods: An introduction. Springer Berlin Heidelberg (2009) 409–542. | MR | Zbl
A PDE approach to fractional diffusion in general domains: a priori error analysis. Found. Comput. Math. 15 (2015) 733–791. | DOI | MR | Zbl
, and ,A PDE Approach to Space-Time Fractional Parabolic Problems. SIAM J. Numer. Anal. 54 (2016) 848–873. | DOI | MR | Zbl
, and ,Piecewise polynomial interpolation in Muckenhoupt weighted Sobolev spaces and applications. Numer. Math. 132 (2016) 85–130. | DOI | MR | Zbl
, and ,A posteriori error analysis for a class of integral equations and variational inequalities. Numer. Math. 116 (2010) 519–552. | DOI | MR | Zbl
, and ,E. Otárola, A PDE approach to numerical fractional diffusion. Ph.D. thesis, University of Maryland, College Park (2014). | MR
P.A. Raviart and J.M. Thomas, Introduction à l’analyse numérique des équations aux dérivées partielles. Collection Mathématiques Appliquées pour la Maîtrise. Masson, Paris (1983). | MR | Zbl
Finite element interpolation of nonsmooth functions satisfying boundary conditions. Math. Comp. 54 (1990) 483–493. | DOI | MR | Zbl
and ,Regularity of the obstacle problem for a fractional power of the Laplace operator. Commun. Pure Appl. Math. 60 (2007) 67–112. | DOI | MR | Zbl
,Extension problem and Harnack’s inequality for some fractional operators. Commun. Partial Differ. Eqs. 35 (2010) 2092–2122. | DOI | MR | Zbl
and ,F. Tröltzsch, Optimal Control of Partial Differential Equations. AMS (2010). | MR | Zbl
B.O. Turesson, Nonlinear potential theory and weighted Sobolev spaces. Springer (2000). | MR | Zbl
Novel numerical methods for solving the time-space fractional diffusion equation in two dimensions. SIAM J. Sci. Comput. 33 (2011) 1159–1180. | DOI | MR | Zbl
, , and ,Cité par Sources :