An adjoint-based method for the numerical approximation of shape optimization problems in presence of fluid-structure interaction
ESAIM: Mathematical Modelling and Numerical Analysis , Tome 52 (2018) no. 4, pp. 1501-1532.

In this work, we propose both a theoretical framework and a numerical method to tackle shape optimization problems related with fluid dynamics applications in presence of fluid-structure interactions. We present a general framework relying on the solution to a suitable adjoint problem and the characterization of the shape gradient of the cost functional to be minimized. We show how to derive a system of (first-order) optimality conditions combining several tools from shape analysis and how to exploit them in order to set a numerical iterative procedure to approximate the optimal solution. We also show how to deal efficiently with shape deformations (resulting from both the fluid-structure interaction and the optimization process). As benchmark case, we consider an unsteady Stokes flow in an elastic channel with compliant walls, whose motion under the effect of the flow is described through a linear Koiter shell model. Potential applications are related e.g. to design of cardiovascular prostheses in physiological flows or design of components in aerodynamics.

Reçu le :
Accepté le :
DOI : 10.1051/m2an/2017006
Classification : 49Q10, 49J20, 65K10, 65N30, 74F10, 76D55
Mots clés : PDE-constrained optimization, shape optimization, fluid-structure interaction, adjoint problem
Manzoni, Andrea 1 ; Ponti, Luca 2

1 CMCS-MATHICSE-SB, Ecole Polytechnique Fédérale de Lausanne, Station 8, 1015 Lausanne, Switzerland
2 Dipartimento di Matematica “F. Brioschi”, Politecnico di Milano, via Bonardi 9, 20133 Milano, Italy
@article{M2AN_2018__52_4_1501_0,
     author = {Manzoni, Andrea and Ponti, Luca},
     title = {An adjoint-based method for the numerical approximation of shape optimization problems in presence of fluid-structure interaction},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis },
     pages = {1501--1532},
     publisher = {EDP-Sciences},
     volume = {52},
     number = {4},
     year = {2018},
     doi = {10.1051/m2an/2017006},
     zbl = {1407.49069},
     mrnumber = {3875295},
     language = {en},
     url = {http://archive.numdam.org/articles/10.1051/m2an/2017006/}
}
TY  - JOUR
AU  - Manzoni, Andrea
AU  - Ponti, Luca
TI  - An adjoint-based method for the numerical approximation of shape optimization problems in presence of fluid-structure interaction
JO  - ESAIM: Mathematical Modelling and Numerical Analysis 
PY  - 2018
SP  - 1501
EP  - 1532
VL  - 52
IS  - 4
PB  - EDP-Sciences
UR  - http://archive.numdam.org/articles/10.1051/m2an/2017006/
DO  - 10.1051/m2an/2017006
LA  - en
ID  - M2AN_2018__52_4_1501_0
ER  - 
%0 Journal Article
%A Manzoni, Andrea
%A Ponti, Luca
%T An adjoint-based method for the numerical approximation of shape optimization problems in presence of fluid-structure interaction
%J ESAIM: Mathematical Modelling and Numerical Analysis 
%D 2018
%P 1501-1532
%V 52
%N 4
%I EDP-Sciences
%U http://archive.numdam.org/articles/10.1051/m2an/2017006/
%R 10.1051/m2an/2017006
%G en
%F M2AN_2018__52_4_1501_0
Manzoni, Andrea; Ponti, Luca. An adjoint-based method for the numerical approximation of shape optimization problems in presence of fluid-structure interaction. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 52 (2018) no. 4, pp. 1501-1532. doi : 10.1051/m2an/2017006. http://archive.numdam.org/articles/10.1051/m2an/2017006/

[1] G. Allaire, Conception Optimale de Structures. Springer Verlag Berlin Heidelberg (2006). | MR | Zbl

[2] G. Allaire and O. Pantz, Structural optimization with FreeFem++. Struct. Multidisc. Optim. 32 (2006) 173–181. | DOI | MR | Zbl

[3] I. Babuška, The finite element method with Lagrange multipliers. Num. Math. 20 (1972) 179–192. | DOI | MR | Zbl

[4] S. Badia, F. Nobile and C. Vergara, Fluid-structure partitioned procedures based on Robin transmission conditions. J. Comput. Phys. 227 (2008) 7027–7051. | DOI | MR | Zbl

[5] S. Badia, F. Nobile and C. Vergara, Robin-Robin preconditioned Krylov methods for fluid-structure interaction problems. Comput. Methods Appl. Mech. Engrg. 198 (2009) 2768–2784. | DOI | MR | Zbl

[6] F. Ballarin, A. Manzoni, G. Rozza and S. Salsa, Shape optimization by free-form deformation: existence results and numerical solution for Stokes flows. J. Sci. Comput. 60 (2014) 537–563. | DOI | MR | Zbl

[7] R. Becker and B. Vexler, Optimal control of the convection-diffusion equation using stabilized finite element methods. Num. Math. 106 (2007) 349–367. | DOI | MR | Zbl

[8] H.-J. Bungartz and M. Schäfer, Fluid-Structure Interaction. Modelling, Simulation, Optimisation, Vol. 53 of Lect. Notes Comput. Sci. Eng. (2006). | DOI | MR

[9] P. Causin, J.F. Gerbeau and F. Nobile, Added-mass effect in the design of partitioned algorithms for fluid-structure problems. Comput. Meth. Appl. Mech. Engrg. 194 (2005) 4506–4527. | DOI | MR | Zbl

[10] A. Chambolle, B. Desjardins, M.J. Esteban and C. Grandmont, Existence of weak solutions for the unsteady interaction of a viscous fluid with an elastic plate. J. Math. Fluid Mech. 7 (2005) 368–404. | DOI | MR | Zbl

[11] P. Crosetto, S. Deparis, G. Fourestey and A. Quarteroni, Parallel algorithms for fluid-structure interaction problems in haemodynamics. SIAM J. Sci. Comput. 33 (2011) 1598–1622. | DOI | MR | Zbl

[12] P. Crosetto, P. Reymond, S. Deparis, D. Kontaxakis, N. Stergiopulos and A. Quarteroni, Fluid-structure interaction simulation of aortic blood flow. Comput. Fluids 43 (2011) 46–57. | DOI | MR

[13] M.C. Delfour and J.P. Zolésio, Shape and Geometries: metrics, analysis, differential calculus and optimization. Society for Industrial and Applied Mathematics (2011). | MR | Zbl

[14] E.H. Dowell and K.C. Hall, Modeling of fluid-structure interaction. Annu. Rev. Fluid Mech. 33 (2001) 445–490. | DOI | Zbl

[15] K. Eppler and H. Harbrecht, Shape optimization for free boundary problems – analysis and numerics. In Constrained Optimization and Optimal Control for Partial fferential Equations. edited by G. Leugering, S. Engell, A. Griewank, M. Hinze, R. Rannacher, V. Schulz, M. Ulbrich and S. Ulbrich. Springer Basel (2012) 277–288. | DOI | MR

[16] L.C. Evans, Partial differential equations. Graduate studies in mathematics. American Mathematical Society (1998). | MR | Zbl

[17] C. Farhat, M. Lesoinne and P. Le Tallec, Load and motion transfer algorithms for fluid/structure interaction problems with non-matching discrete interfaces: Momentum and energy conservation, optimal discretization and application to aeroelasticity. Comput. Meth. Appl. Mech. Eng. 157 (1998) 95–114. | DOI | MR | Zbl

[18] M.A. Fernàndez and J.F. Gerbeau, Algorithms for fluid-structure interaction problems. In Cardiovascular Mathematics. Vol. 1 of Modeling, Simulation and Applications (MS&A). edited by L. Formaggia, A Quarteroni and A. Veneziani. Springer Verlag Italia, Milano (2009). | MR

[19] M.A. Fernàndez, J.F. Gerbeau and C. Grandmont, A projection semi-implicit scheme for the coupling of an elastic structure with an incompressible fluid. Int. J. Numer. Methods Eng. 69 (2007) 794–821. | DOI | MR | Zbl

[20] L. Formaggia and F. Nobile, A stability analysis for the arbitrary Lagrangian Eulerian formulation with finite elements. East-West J. Numer. Math. 7 (1999) 105–131. | MR | Zbl

[21] I. Fumagalli, N. Parolini and M. Verani, Shape optimization for Stokes flow: a reference domain approach. ESAIM: Math. Modelling Numer. Anal. (2015) 49 921–951. | Numdam | MR | Zbl

[22] L. Gerardo-Giorda, F. Nobile and C. Vergara, Analysis and optimization of Robin-Robin partitioned procedures in fluid-structure interaction problems. SIAM J. Numer. Anal. 48 (2010) 2091–2116. | DOI | MR | Zbl

[23] M.D. Gunzburger, Perspectives in flow control and optimization. SIAM, Philadelphia (2003). | MR | Zbl

[24] M.D. Gunzburger, L. Hou and T.P. Svobodny, Optimal control and optimization of viscous, incompressible flows. In Incompressible Computational Fluid Dynamics. edited by M.D.Gunzburger and R.A. Nicolaides. Cambridge University Press (1993) 109–150. | DOI | Zbl

[25] J. Haslinger and R.A.E. Mäkinen, Introduction to Shape Optimization: Theory, Approximation and Computation. SIAM (2003). | DOI | MR | Zbl

[26] C. Heinrich, R. Duvigneau and L. Blanchard, Isogeometric shape optimization in fluid-structure interaction. Rapport de recherche no 7639, INRIA (2011).

[27] M. Hinze, R. Pinnau, M. Ulbrich and S. Ulbrich, Optimization with PDE Constraints. Springer, Netherlands (2009). | MR | Zbl

[28] K. Ito and K. Kunisch, Lagrange Multiplier Approach to Variational Problems and Applications. Adv. Des. Control. SIAM (2008). | MR | Zbl

[29] A. Jameson, Aerodynamic design via control theory. J. Sci. Comput. 3 (1988) 233–260. | DOI | Zbl

[30] A. Jameson, Optimum aerodynamic design using cfd and control theory. In Proceedings of the 12th AIAA Computational Fluid Dynamics Conference (1995) 926–949. AIAA Paper 95–1729

[31] H.J. Lamousin and W.N. Waggenspack, NURBS-based free-form deformations. IEEE Comput. Graph. Appl. 14 (1994). | DOI

[32] T. Lassila, A. Manzoni, A. Quarteroni and G. Rozza, Boundary control and shape optimization for the robust design of bypass anastomoses under uncertainty. ESAIM: Math. Model. Numer. Anal. 47 (2013) 1107–1131. | DOI | Numdam | MR | Zbl

[33] T. Lassila, A. Manzoni, A. Quarteroni and G. Rozza, A reduced computational and geometrical framework for inverse problems in haemodynamics. Int. J. Numer. Methods Biomed. Engng. 29 (2013) 741–776. | DOI | MR

[34] P. Le Tallec and J. Mouro, Fluid structure interaction with large structural displacements. Comput. Meth. Appl. Mech. Engrg. 190 (2001) 3039–3067. | DOI | Zbl

[35] Y. Maday, Analysis of coupled models for fluid-structure interaction of internal flows. In Cardiovascular Mathematics, edited by L. Formaggia, A Quarteroni and A. Veneziani. Vol. 1 of Modeling, Simulation and Applications (MS&A). Springer Verlag Italia, Milano (2009). | DOI | MR

[36] A. Manzoni, A. Quarteroni and G. Rozza, Shape optimization of cardiovascular geometries by reduced basis methods and free-form deformation techniques. Int. J. Numer. Methods Fluids 70 (2012) 646–670. | DOI | MR | Zbl

[37] B. Mohammadi and O. Pironneau, Applied shape optimization for fluids. Oxford University Press (2009). | DOI | MR | Zbl

[38] M. Moubachir and J.P. Zolésio, Moving Shape Analysis and Control. Applications to Fluid Structure Interactions. Chapman and Hall (2006). | DOI | MR | Zbl

[39] B. Muha and S. Canić, Existence of a weak solution to a nonlinear fluid-structure interaction problem modeling the flow of an incompressible, viscous fluid in a cylinder with deformable walls. Arch. Rat. Mech. Anal. 207 (2013) 919–968. | DOI | MR | Zbl

[40] F. Negri, A. Manzoni and G. Rozza, Reduced basis approximation of parametrized optimal flow control problems for the Stokes equations. Comput. Math. Appl. 69 (2015) 319–336. | DOI | MR | Zbl

[41] F. Nobile and C. Vergara, An effective fluid-structure interaction formulation for vascular dynamics by generalised robin conditions. SIAM J. Sci. Comput. 30 (2008) 731–763. | DOI | MR | Zbl

[42] W.F. Noh, A time-dependent two-space-dimensional coupled Eulerian-Lagrangian code. Methods in Comput. Phys. 3 (1964) 117–179.

[43] N. Parolini and A. Quarteroni, Mathematical models and numerical simulations for the America’s Cup. Comput. Meth. Appl. Mech. Engrg. 194 (2005) 1001–1026. | DOI | MR | Zbl

[44] L. Piegl and W. Tiller, The NURBS Book. Springer (1997). | DOI

[45] A. Quarteroni, G. Rozza, L. Dedè and A. Quaini, Numerical approximation of a control problem for advection-diffusion processes. In System Modeling and Optimization: Proceedings of the 22nd IFIP TC7 Conference. edited by F. Ceragioli, A. Dontchev, H. Futura, K. Marti and L. Pandolfi. Springer US (2006) 261–273. | DOI | MR | Zbl

[46] A. Sacharow, S. Odendahl, A. Peuker, D. Biermann, T. Surmann and A. Zabel, Iterative, simulation-based shape modification by free-form deformation of the nc programs. Adv. Engine. Soft. 56 (2013) 63–71. | DOI

[47] R.F. Sarraga, Modifying cad/cam surfaces according to displacements prescribed at a finite set of points. Comput. Aided Design 36 (2004) 343–349. | DOI

[48] S. Schäfer, D.C. Sternel, G. Becker and P. Pironkov, Efficient numerical simulation and optimization of fluid-structure interaction. Fluid Structure Interaction II – Lect. Notes Comput. Sci. Eng. 73 (2010) 131–158. | MR | Zbl

[49] T.W. Sederberg and S.R. Parry, Free-form deformation of solid geometric models. Comput. Graph. 20 (1986) 151–160. | DOI

[50] J. Sokolowski and J.P. Zolésio,Introduction to Shape Optimization: Shape Sensitivity Analysis. Springer Verlag Berlin Heidelberg (1992). | DOI | MR | Zbl

Cité par Sources :