A note on semilinear fractional elliptic equation: analysis and discretization
ESAIM: Mathematical Modelling and Numerical Analysis , Tome 51 (2017) no. 6, pp. 2049-2067.

In this paper we study existence, regularity, and approximation of solution to a fractional semilinear elliptic equation of order s(0,1). We identify minimal conditions on the nonlinear term and the source which lead to existence of weak solutions and uniform L -bound on the solutions. Next we realize the fractional Laplacian as a Dirichlet-to-Neumann map via the Caffarelli−Silvestre extension. We introduce a first-degree tensor product finite elements space to approximate the truncated problem. We derive a priori error estimates and conclude with an illustrative numerical example.

Reçu le :
Accepté le :
DOI : 10.1051/m2an/2017023
Classification : 35S15, 26A33, 65R20, 65N12, 65N30
Mots-clés : Fractional Dirichlet Laplace operator, semi-linear elliptic problems, regularity of weak solutions, discretization, error estimates
Antil, Harbir 1 ; Pfefferer, Johannes 2 ; Warma, Mahamadi 3

1 Department of Mathematical Sciences, George Mason University, Fairfax, VA 22030, USA.
2 Chair of Optimal Control, Center of Mathematical Sciences, Technical University of Munich, Boltzmannstraße 3, 85748 Garching by Munich, Germany.
3 University of Puerto Rico (Rio Piedras Campus), College of Natural Sciences, Department of Mathematics, PO Box 70377 San Juan PR 00936-8377 (USA).
@article{M2AN_2017__51_6_2049_0,
     author = {Antil, Harbir and Pfefferer, Johannes and Warma, Mahamadi},
     title = {A note on semilinear fractional elliptic equation: analysis and discretization},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis },
     pages = {2049--2067},
     publisher = {EDP-Sciences},
     volume = {51},
     number = {6},
     year = {2017},
     doi = {10.1051/m2an/2017023},
     zbl = {1387.35648},
     mrnumber = {3745164},
     language = {en},
     url = {http://archive.numdam.org/articles/10.1051/m2an/2017023/}
}
TY  - JOUR
AU  - Antil, Harbir
AU  - Pfefferer, Johannes
AU  - Warma, Mahamadi
TI  - A note on semilinear fractional elliptic equation: analysis and discretization
JO  - ESAIM: Mathematical Modelling and Numerical Analysis 
PY  - 2017
SP  - 2049
EP  - 2067
VL  - 51
IS  - 6
PB  - EDP-Sciences
UR  - http://archive.numdam.org/articles/10.1051/m2an/2017023/
DO  - 10.1051/m2an/2017023
LA  - en
ID  - M2AN_2017__51_6_2049_0
ER  - 
%0 Journal Article
%A Antil, Harbir
%A Pfefferer, Johannes
%A Warma, Mahamadi
%T A note on semilinear fractional elliptic equation: analysis and discretization
%J ESAIM: Mathematical Modelling and Numerical Analysis 
%D 2017
%P 2049-2067
%V 51
%N 6
%I EDP-Sciences
%U http://archive.numdam.org/articles/10.1051/m2an/2017023/
%R 10.1051/m2an/2017023
%G en
%F M2AN_2017__51_6_2049_0
Antil, Harbir; Pfefferer, Johannes; Warma, Mahamadi. A note on semilinear fractional elliptic equation: analysis and discretization. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 51 (2017) no. 6, pp. 2049-2067. doi : 10.1051/m2an/2017023. http://archive.numdam.org/articles/10.1051/m2an/2017023/

N. Abatangelo and L. Dupaigne, Nonhomogeneous boundary conditions for the spectral fractional laplacian. Ann. Inst. Henri Poincaré Anal. Non Linéaire 34 (2017) 439–467. | DOI | Numdam | MR | Zbl

R.A. Adams, Sobolev Spaces. Pure and Applied Mathematics. Vol. 65. Academic Press [A subsidiary of Harcourt Brace Jovanovich, Publishers], New York London (1975). | MR | Zbl

M. Biegert and M. Warma, Some quasi-linear elliptic equations with inhomogeneous generalized Robin boundary conditions on “bad” domains. Adv. Differ. Equ. 15 (2010) 893–924. | MR | Zbl

X. Cabré and J. Tan, Positive solutions of nonlinear problems involving the square root of the Laplacian. Adv. Math. 224 (2010) 2052–2093. | DOI | MR | Zbl

L. Caffarelli and L. Silvestre, An extension problem related to the fractional Laplacian. Commun. Partial Differ. Equ. 32 (2007) 1245–1260. | DOI | MR | Zbl

L.A. Caffarelli and P.R. Stinga, Fractional elliptic equations, Caccioppoli estimates and regularity. Ann. Inst. Henri Poincaré Anal. Non Linéaire 33 (2016) 767–807. | DOI | Numdam | MR | Zbl

A. Capella, J. Dávila, L. Dupaigne and Y. Sire, Regularity of radial extremal solutions for some non-local semilinear equations. Commun. Partial Differ. Equ. 36 (2011) 1353–1384. | DOI | MR | Zbl

L. Chen, Sobolev spaces and elliptic equations (2011). Available at http://www.math.uci.edu/˜chenlong/226/Ch1Space.pdf.

W. Chen, A speculative study of 2/3-order fractional laplacian modeling of turbulence: Some thoughts and conjectures. Chaos 16 (2006) 1–11. | DOI | Zbl

D. Del Castillo-Negrete, B.A. Carreras and V.E. Lynch, Fractional diffusion in plasma turbulence. Phys. Plasmas 11 (2004) 3854–3864. | DOI

E. Di Nezza, G. Palatucci and E. Valdinoci, Hitchhikers guide to the fractional Sobolev spaces. Bull. Sci. Math. 136 (2012) 521–573. | DOI | MR | Zbl

M. Doman, Weak uniform rotundity of Orlicz sequence spaces. Math. Nachr. 162 (1993) 145–151. | DOI | MR | Zbl

A. Ern and J.-L. Guermond, Theory and practice of finite elements, vol. 159 of Appl. Math. Sci. Springer Verlag, New York (2004). | MR | Zbl

V. Gol’Dshtein and A. Ukhlov, Weighted Sobolev spaces and embedding theorems. Trans. Amer. Math. Soc. 361 (2009) 3829–3850. | DOI | MR | Zbl

G. Grubb, Regularity of spectral fractional dirichlet and neumann problems. Math. Nachr. 289 (2016) 831–844. | DOI | MR | Zbl

D. Kinderlehrer and G. Stampacchia, An Introduction to Variational Inequalities and their Applications. Academic Press, New York (1980). | MR | Zbl

A. Kufner and B. Opic, How to define reasonably weighted Sobolev spaces. Comment. Math. Univ. Carolin. 25 (1984) 537–554. | MR | Zbl

J.-L. Lions and E. Magenes, Non-homogeneous boundary value problems and applications. Vol. I. Translated from the French by P. Kenneth, Die Grundlehren der mathematischen Wissenschaften, Band 181. Springer Verlag, New York-Heidelberg (1972). | MR | Zbl

R.H. Nochetto, E. Otárola and A.J. Salgado, A PDE approach to fractional diffusion in general domains: A priori error analysis. Found. Comput. Math. 15 (2015) 733–791. | DOI | MR | Zbl

R.H. Nochetto, E. Otárola and A.J. Salgado, A PDE approach to space-time fractional parabolic problems. SIAM J. Numer. Anal. 54 (2016) 848–873. | DOI | MR | Zbl

M.M. Rao and Z.D. Ren, Theory of Orlicz Spaces. In Vol. 146 of Monographs and Textbooks in Pure and Applied Mathematics. Marcel Dekker, Inc., New York (1991). | MR | Zbl

R. Song and Z. Vondracek, Potential theory of subordinate killed brownian motion in a domain. Probab. Theory Relat. Field 4 (2003) 578–592. | DOI | MR | Zbl

P.R. Stinga and J.L. Torrea, Extension problem and Harnack’s inequality for some fractional operators. Commun. Partial Differ. Equ. 35 (2010) 2092–2122. | DOI | MR | Zbl

F. Tröltzsch, Optimal control of partial differential equations, Theory, methods and applications, Translated from the 2005 German original by Jürgen Sprekels. Vol. 112 of Graduate Studies in Mathematics. American Mathematical Society, Providence, RI (2010). | MR | Zbl

B.O. Turesson, Nonlinear potential theory and weighted Sobolev spaces, vol. 1736 of Lect. Notes Math. Springer Verlag, Berlin (2000). | MR | Zbl

M. Warma, The fractional relative capacity and the fractional Laplacian with Neumann and Robin boundary conditions on open sets. Potential Anal. 42 (2015) 499–547. | DOI | MR | Zbl

Cité par Sources :