In this paper we study existence, regularity, and approximation of solution to a fractional semilinear elliptic equation of order . We identify minimal conditions on the nonlinear term and the source which lead to existence of weak solutions and uniform -bound on the solutions. Next we realize the fractional Laplacian as a Dirichlet-to-Neumann map via the Caffarelli−Silvestre extension. We introduce a first-degree tensor product finite elements space to approximate the truncated problem. We derive a priori error estimates and conclude with an illustrative numerical example.
Accepté le :
DOI : 10.1051/m2an/2017023
Mots-clés : Fractional Dirichlet Laplace operator, semi-linear elliptic problems, regularity of weak solutions, discretization, error estimates
@article{M2AN_2017__51_6_2049_0, author = {Antil, Harbir and Pfefferer, Johannes and Warma, Mahamadi}, title = {A note on semilinear fractional elliptic equation: analysis and discretization}, journal = {ESAIM: Mathematical Modelling and Numerical Analysis }, pages = {2049--2067}, publisher = {EDP-Sciences}, volume = {51}, number = {6}, year = {2017}, doi = {10.1051/m2an/2017023}, zbl = {1387.35648}, mrnumber = {3745164}, language = {en}, url = {http://archive.numdam.org/articles/10.1051/m2an/2017023/} }
TY - JOUR AU - Antil, Harbir AU - Pfefferer, Johannes AU - Warma, Mahamadi TI - A note on semilinear fractional elliptic equation: analysis and discretization JO - ESAIM: Mathematical Modelling and Numerical Analysis PY - 2017 SP - 2049 EP - 2067 VL - 51 IS - 6 PB - EDP-Sciences UR - http://archive.numdam.org/articles/10.1051/m2an/2017023/ DO - 10.1051/m2an/2017023 LA - en ID - M2AN_2017__51_6_2049_0 ER -
%0 Journal Article %A Antil, Harbir %A Pfefferer, Johannes %A Warma, Mahamadi %T A note on semilinear fractional elliptic equation: analysis and discretization %J ESAIM: Mathematical Modelling and Numerical Analysis %D 2017 %P 2049-2067 %V 51 %N 6 %I EDP-Sciences %U http://archive.numdam.org/articles/10.1051/m2an/2017023/ %R 10.1051/m2an/2017023 %G en %F M2AN_2017__51_6_2049_0
Antil, Harbir; Pfefferer, Johannes; Warma, Mahamadi. A note on semilinear fractional elliptic equation: analysis and discretization. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 51 (2017) no. 6, pp. 2049-2067. doi : 10.1051/m2an/2017023. http://archive.numdam.org/articles/10.1051/m2an/2017023/
Nonhomogeneous boundary conditions for the spectral fractional laplacian. Ann. Inst. Henri Poincaré Anal. Non Linéaire 34 (2017) 439–467. | DOI | Numdam | MR | Zbl
and ,R.A. Adams, Sobolev Spaces. Pure and Applied Mathematics. Vol. 65. Academic Press [A subsidiary of Harcourt Brace Jovanovich, Publishers], New York London (1975). | MR | Zbl
Some quasi-linear elliptic equations with inhomogeneous generalized Robin boundary conditions on “bad” domains. Adv. Differ. Equ. 15 (2010) 893–924. | MR | Zbl
and ,Positive solutions of nonlinear problems involving the square root of the Laplacian. Adv. Math. 224 (2010) 2052–2093. | DOI | MR | Zbl
and ,An extension problem related to the fractional Laplacian. Commun. Partial Differ. Equ. 32 (2007) 1245–1260. | DOI | MR | Zbl
and ,Fractional elliptic equations, Caccioppoli estimates and regularity. Ann. Inst. Henri Poincaré Anal. Non Linéaire 33 (2016) 767–807. | DOI | Numdam | MR | Zbl
and ,Regularity of radial extremal solutions for some non-local semilinear equations. Commun. Partial Differ. Equ. 36 (2011) 1353–1384. | DOI | MR | Zbl
, , and ,L. Chen, Sobolev spaces and elliptic equations (2011). Available at http://www.math.uci.edu/˜chenlong/226/Ch1Space.pdf.
A speculative study of -order fractional laplacian modeling of turbulence: Some thoughts and conjectures. Chaos 16 (2006) 1–11. | DOI | Zbl
,Fractional diffusion in plasma turbulence. Phys. Plasmas 11 (2004) 3854–3864. | DOI
, and ,Hitchhikers guide to the fractional Sobolev spaces. Bull. Sci. Math. 136 (2012) 521–573. | DOI | MR | Zbl
, and ,Weak uniform rotundity of Orlicz sequence spaces. Math. Nachr. 162 (1993) 145–151. | DOI | MR | Zbl
,A. Ern and J.-L. Guermond, Theory and practice of finite elements, vol. 159 of Appl. Math. Sci. Springer Verlag, New York (2004). | MR | Zbl
Weighted Sobolev spaces and embedding theorems. Trans. Amer. Math. Soc. 361 (2009) 3829–3850. | DOI | MR | Zbl
and ,Regularity of spectral fractional dirichlet and neumann problems. Math. Nachr. 289 (2016) 831–844. | DOI | MR | Zbl
,D. Kinderlehrer and G. Stampacchia, An Introduction to Variational Inequalities and their Applications. Academic Press, New York (1980). | MR | Zbl
How to define reasonably weighted Sobolev spaces. Comment. Math. Univ. Carolin. 25 (1984) 537–554. | MR | Zbl
and ,J.-L. Lions and E. Magenes, Non-homogeneous boundary value problems and applications. Vol. I. Translated from the French by P. Kenneth, Die Grundlehren der mathematischen Wissenschaften, Band 181. Springer Verlag, New York-Heidelberg (1972). | MR | Zbl
A PDE approach to fractional diffusion in general domains: A priori error analysis. Found. Comput. Math. 15 (2015) 733–791. | DOI | MR | Zbl
, and ,A PDE approach to space-time fractional parabolic problems. SIAM J. Numer. Anal. 54 (2016) 848–873. | DOI | MR | Zbl
, and ,M.M. Rao and Z.D. Ren, Theory of Orlicz Spaces. In Vol. 146 of Monographs and Textbooks in Pure and Applied Mathematics. Marcel Dekker, Inc., New York (1991). | MR | Zbl
Potential theory of subordinate killed brownian motion in a domain. Probab. Theory Relat. Field 4 (2003) 578–592. | DOI | MR | Zbl
and ,Extension problem and Harnack’s inequality for some fractional operators. Commun. Partial Differ. Equ. 35 (2010) 2092–2122. | DOI | MR | Zbl
and ,F. Tröltzsch, Optimal control of partial differential equations, Theory, methods and applications, Translated from the 2005 German original by Jürgen Sprekels. Vol. 112 of Graduate Studies in Mathematics. American Mathematical Society, Providence, RI (2010). | MR | Zbl
B.O. Turesson, Nonlinear potential theory and weighted Sobolev spaces, vol. 1736 of Lect. Notes Math. Springer Verlag, Berlin (2000). | MR | Zbl
The fractional relative capacity and the fractional Laplacian with Neumann and Robin boundary conditions on open sets. Potential Anal. 42 (2015) 499–547. | DOI | MR | Zbl
,Cité par Sources :