In this work we present and analyse new inf-sup stable, and stabilised, finite element methods for the Oseen equation in anisotropic quadrilateral meshes. The meshes are formed of closed parallelograms, and the analysis is restricted to two space dimensions. Starting with the lowest order pair, we first identify the pressure components that make this finite element pair to be non-inf-sup stable, especially with respect to the aspect ratio. We then propose a way to penalise them, both strongly, by directly removing them from the space, and weakly, by adding a stabilisation term based on jumps of the pressure across selected edges. Concerning the velocity stabilisation, we propose an enhanced grad-div term. Stability and optimal a priori error estimates are given, and the results are confirmed numerically.
Mots-clés : Oseen equation, stabilised finite element method, anisotropic quadrilateral mesh
@article{M2AN_2018__52_1_99_0, author = {Barrenechea, Gabriel R. and Wachtel, Andreas}, title = {Stabilised finite element methods for the {Oseen} problem on anisotropic quadrilateral meshes}, journal = {ESAIM: Mathematical Modelling and Numerical Analysis }, pages = {99--122}, publisher = {EDP-Sciences}, volume = {52}, number = {1}, year = {2018}, doi = {10.1051/m2an/2017031}, zbl = {1395.65138}, mrnumber = {3808154}, language = {en}, url = {http://archive.numdam.org/articles/10.1051/m2an/2017031/} }
TY - JOUR AU - Barrenechea, Gabriel R. AU - Wachtel, Andreas TI - Stabilised finite element methods for the Oseen problem on anisotropic quadrilateral meshes JO - ESAIM: Mathematical Modelling and Numerical Analysis PY - 2018 SP - 99 EP - 122 VL - 52 IS - 1 PB - EDP-Sciences UR - http://archive.numdam.org/articles/10.1051/m2an/2017031/ DO - 10.1051/m2an/2017031 LA - en ID - M2AN_2018__52_1_99_0 ER -
%0 Journal Article %A Barrenechea, Gabriel R. %A Wachtel, Andreas %T Stabilised finite element methods for the Oseen problem on anisotropic quadrilateral meshes %J ESAIM: Mathematical Modelling and Numerical Analysis %D 2018 %P 99-122 %V 52 %N 1 %I EDP-Sciences %U http://archive.numdam.org/articles/10.1051/m2an/2017031/ %R 10.1051/m2an/2017031 %G en %F M2AN_2018__52_1_99_0
Barrenechea, Gabriel R.; Wachtel, Andreas. Stabilised finite element methods for the Oseen problem on anisotropic quadrilateral meshes. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 52 (2018) no. 1, pp. 99-122. doi : 10.1051/m2an/2017031. http://archive.numdam.org/articles/10.1051/m2an/2017031/
[1] Stabilized finite element methods based on multiscale enrichment for the Stokes problem. SIAM J. Numer. Anal. 44 (2006) 322–348 | DOI | MR | Zbl
, and ,[2] Stabilization of high aspect ratio mixed finite elements for incompressible flow. SIAM J. Numer. Anal. 53 (2015) 1107–1120 | DOI | MR | Zbl
, and ,[3] The stability of mixed hp-finite element methods for Stokes flow on high aspect ratio elements. SIAM J. Numer. Anal. 38 (2000) 1721–1761 | DOI | MR | Zbl
and ,[4] Stabilized finite element methods with anisotropic mesh refinement for the Oseen problem. Appl. Numer. Math. 58 (2008) 1830–1843 | DOI | MR | Zbl
, and ,[5] A finite element pressure gradient stabilization for the Stokes equations based on local projections. Calcolo 38 (2001) 173–199 | DOI | MR | Zbl
and ,[6] Virtual bubbles and Galerkin-least-squares methods (Ga.L.S.). Comput. Methods Appl. Mech. Engrg. 105 (1993) 125–141 | DOI | MR | Zbl
, and ,[7] Mixed finite element methods and applications. Springer Series Comput. Math., vol. 44. Springer, Heidelberg (2013) | MR | Zbl
, and ,[8] Stabilized finite element methods for the generalized Oseen problem. Comput. Methods Appl. Mech. Engrg. 196 (2007) 853–866 | DOI | MR | Zbl
, , and ,[9] Stabilization of low-order mixed finite elements for the Stokes equations. SIAM J. Numer. Anal. 44 (2006) 82–101 | DOI | MR | Zbl
, and ,[10] A minimal stabilisation procedure for mixed finite element methods. Numer. Math. 89 (2001) 457–491 | DOI | MR | Zbl
and ,[11] Streamline upwind/Petrov-Galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier-Stokes equations. Comput. Methods Appl. Mech. Engrg. 32 (1982) 199–259 | DOI | MR | Zbl
and ,[12] An anisotropic GLS-stabilized finite element method for incompressible flow problems. Comput. Methods Appl. Mech. Engrg. 197 (2008) 3712–3723 | DOI | MR | Zbl
,[13] Divergence preserving interpolation on anisotropic quadrilateral meshes. Comput. Methods Appl. Math. 12 (2012) 123–138 | DOI | MR | Zbl
, and ,[14] A stabilized finite element scheme for the Navier-Stokes equations on quadrilateral anisotropic meshes. ESAIM: M2AN 42 (2008) 903–924 | DOI | Numdam | MR | Zbl
,[15] Pressure projection stabilizations for Galerkin approximations of Stokes’ and Darcy’s problem. Numer. Methods Partial Differ. Equ. 24 (2008) 127–143 | DOI | MR | Zbl
,[16] A residual local projection for the Oseen equation. Comput. Methods Appl. Mech. Engrg. 199 (2010) 1906–1921 | DOI | MR | Zbl
and ,[17] A note on the stabilised Q1-P0 method on quadrilaterals with high aspect ratios, Boundary and Interior Layers, Proceedings of BAIL 2014, edited by . Lect. Notes Comput. Sci. Eng. 108 (2015) 1–11 | MR
and ,[18] Analysis of a stabilized finite element approximation of the Oseen equations using orthogonal subscales. Appl. Numer. Math. 58 (2008) 264–283 | DOI | MR | Zbl
,[19] A note on variational Representation for singular values of matrix. Appl. Math. Comput. 143 (2003) 559–563 | MR | Zbl
and ,[20] Stabilized finite element methods. II. The incompressible Navier -Stokes equation.Comput. Methods Appl. Mech. Engrg. 99 (1992) 209–233 | DOI | MR | Zbl
and ,[21] Two classes of mixed finite element methods. Comput. Methods Appl. Mech. Engrg. 69 (1988) 89–129 | DOI | MR | Zbl
and ,[22] Stabilizing poor mass conservation in incompressible flow problems with large irrotational forcing and application to thermal convection. Comput. Methods Appl. Mech. Engrg. 237 (2012) 166–176 | DOI | MR | Zbl
, , and ,[23] Finite element methods for Navier Stokes equations. Springer, Berlin (1986) | DOI | MR | Zbl
and ,[24] A new finite element formulation for computational fluid dynamics. V. Circumventing the Babuška-Brezzi condition: a stable Petrov-Galerkin formulation of the Stokes problem accommodating equal-order interpolations. Comput. Methods Appl. Mech. Engrg. 59 (1986) 85–99 | DOI | MR | Zbl
, and ,[25] A new finite element formulation for computational fluid dynamics. VIII. The Galerkin/least-squares method for advective-diffusive equations. Comput. Methods Appl. Mech. Engrg. 73 (1989) 173–189 | DOI | MR | Zbl
, and ,[26] Finite element methods for incompressible flow problems. Springer Series in Computational Mathematics, vol. 51. Springer Verlag (2017) | MR
,[27] On the parameter choice in grad-div stabilization for the Stokes equations. Adv. Comput. Math. 40 (2014) 491–516 | DOI | MR | Zbl
, , and ,[28] A generalization of the local projection stabilization for convection-diffusion-reaction equations. SIAM J. Numer. Anal. 48 (2010) 659–680 | DOI | MR | Zbl
,[29] Analysis of locally stabilized mixed finite element methods for the Stokes problem. Math. Comput. 58 (1992) 1–10 | DOI | MR | Zbl
and ,[30] On the accuracy of the rotation form in simulations of the Navier -Stokes equations. J. Comput. Phys. 228 (2009) 3433–3447 | DOI | MR | Zbl
, , , and ,[31] Robust stabilized Stokes approximation methods for highly stretched grids. IMA J. Numer. Anal. 33 (2013) 413–431 | DOI | MR | Zbl
and ,[32] Stabilized finite elements on anisotropic meshes: a priori error estimates for the advection-diffusion and the Stokes problems. SIAM J. Numer. Anal. 41 (2003) 1131–1162 | DOI | MR | Zbl
, and ,[33] A unified convergence analysis for local projection stabilisations applied to the Oseen problem. ESAIM: M2AN 41 (2007) 713–742 | DOI | Numdam | MR | Zbl
, and ,[34] Local projection type stabilization applied to inf-sup stable discretizations of the Oseen problem. IMA J. Numer. Anal. 35 (2015) 239–269 | DOI | MR | Zbl
and ,[35] Grad-div stabilization of the Stokes equations. Math. Comput. 73 (2004) 1699–1718 | DOI | MR | Zbl
and ,[36] A multigrid version of a simple finite element method for the Stokes problem. Math. Comput. 45 (1985) 1–14 | DOI | MR | Zbl
and ,[37] Robust numerical methods for singularly perturbed differential equations, 2nded. Springer Series in Computational Mathematics, vol. 24. Springer Verlag, Berlin (2008) | MR | Zbl
, and ,Cité par Sources :