Unified formulation and analysis of mixed and primal discontinuous skeletal methods on polytopal meshes
ESAIM: Mathematical Modelling and Numerical Analysis , Tome 52 (2018) no. 1, pp. 1-28.

We propose in this work a unified formulation of mixed and primal discretization methods on polyhedral meshes hinging on globally coupled degrees of freedom that are discontinuous polynomials on the mesh skeleton. To emphasize this feature, these methods are referred to here as discontinuous skeletal. As a starting point, we define two families of discretizations corresponding, respectively, to mixed and primal formulations of discontinuous skeletal methods. Each family is uniquely identified by prescribing three polynomial degrees defining the degrees of freedom, and a stabilization bilinear form which has to satisfy two properties of simple verification: stability and polynomial consistency. Several examples of methods available in the recent literature are shown to belong to either one of those families. We then prove new equivalence results that build a bridge between the two families of methods. Precisely, we show that for any mixed method there exists a corresponding equivalent primal method, and the converse is true provided that the gradients are approximated in suitable spaces. A unified convergence analysis is carried out delivering optimal error estimates in both energy- and L 2 -norms.

Reçu le :
Accepté le :
DOI : 10.1051/m2an/2017036
Classification : 65N08, 65N30, 65N12
Mots-clés : Polyhedral meshes, hybrid high-order methods, virtual element methods, mixed and hybrid finite volume methods, mimetic finite difference methods
Boffi, Daniele 1 ; Di Pietro, Daniele A. 2

1 Universitàdegli Studi di Pavia, Dipartimento di Matematica “Felice Casorati”, 27100 Pavia, Italy.
2 Institut Montpelliérain Alexander Grothendieck, CNRS, Univ. Montpellier, France.
@article{M2AN_2018__52_1_1_0,
     author = {Boffi, Daniele and Di Pietro, Daniele A.},
     title = {Unified formulation and analysis of mixed and primal discontinuous skeletal methods on polytopal meshes},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis },
     pages = {1--28},
     publisher = {EDP-Sciences},
     volume = {52},
     number = {1},
     year = {2018},
     doi = {10.1051/m2an/2017036},
     zbl = {1402.65135},
     mrnumber = {3808151},
     language = {en},
     url = {http://archive.numdam.org/articles/10.1051/m2an/2017036/}
}
TY  - JOUR
AU  - Boffi, Daniele
AU  - Di Pietro, Daniele A.
TI  - Unified formulation and analysis of mixed and primal discontinuous skeletal methods on polytopal meshes
JO  - ESAIM: Mathematical Modelling and Numerical Analysis 
PY  - 2018
SP  - 1
EP  - 28
VL  - 52
IS  - 1
PB  - EDP-Sciences
UR  - http://archive.numdam.org/articles/10.1051/m2an/2017036/
DO  - 10.1051/m2an/2017036
LA  - en
ID  - M2AN_2018__52_1_1_0
ER  - 
%0 Journal Article
%A Boffi, Daniele
%A Di Pietro, Daniele A.
%T Unified formulation and analysis of mixed and primal discontinuous skeletal methods on polytopal meshes
%J ESAIM: Mathematical Modelling and Numerical Analysis 
%D 2018
%P 1-28
%V 52
%N 1
%I EDP-Sciences
%U http://archive.numdam.org/articles/10.1051/m2an/2017036/
%R 10.1051/m2an/2017036
%G en
%F M2AN_2018__52_1_1_0
Boffi, Daniele; Di Pietro, Daniele A. Unified formulation and analysis of mixed and primal discontinuous skeletal methods on polytopal meshes. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 52 (2018) no. 1, pp. 1-28. doi : 10.1051/m2an/2017036. http://archive.numdam.org/articles/10.1051/m2an/2017036/

J. Aghili, S. Boyaval and D.A. Di Pietro, Hybridization of mixed high-order methods on general meshes and application to the Stokes equations. Comput. Meth. Appl. Math. 15 (2015) 111–134. | DOI | MR | Zbl

P.F. Antonietti, S. Giani and P. Houston, hp-version composite discontinuous Galerkin methods for elliptic problems on complicated domains. SIAM J. Sci. Comput. 35 (2013) A1417–A1439. | DOI | MR | Zbl

R. Araya, C. Harder, D. Paredes and F. Valentin, Multiscale hybrid-mixed method. SIAM J. Numer. Anal. 51 (2013) 3505–3531. | DOI | MR | Zbl

T. Arbogast and Z. Chen, On the implementation of mixed methods as nonconforming methods for second-order elliptic problems. Math. Comput. 64 (1995) 943–972. | MR | Zbl

T. Arbogast and M.R. Correa, Two Families of H(div) Mixed Finite Elements on Quadrilaterals of Minimal Dimension. SIAM J. Numer. Anal. 54 (2016) 3332–3356. | DOI | MR | Zbl

D.N. Arnold, D. Boffi and R.S. Falk, Quadrilateral H(div) finite elements. SIAM J. Numer. Anal. 42 (2005) 2429–2451. | DOI | MR | Zbl

D.N. Arnold and F. Brezzi, Mixed and nonconforming finite element methods: implementation, postprocessing and error estimates. RAIRO: M2AN 19 (1985) 7–32. | Numdam | MR | Zbl

B. Ayuso De Dios, K. Lipnikov and G. Manzini, The nonconforming virtual element method. ESAIM: M2AN 50 (2016) 879–904. | DOI | Numdam | MR | Zbl

C. Bahriawati and C. Carstensen, Three Matlab implementations of the lowest-order Raviart–Thomas MFEM with a posteriori error control. Comput. Meth. Appl. Math. 5 (2005) 333–361. | DOI | MR | Zbl

F. Bassi, L. Botti, A. Colombo, D.A. Di Pietro and P. Tesini, On the flexibility of agglomeration based physical space discontinuous Galerkin discretizations. J. Comput. Phys. 231 (2012) 45–65. | DOI | MR | Zbl

L. Beirão Da Veiga, F. Brezzi, A. Cangiani, G. Manzini, L.D. Marini and A. Russo, Basic principles of virtual element methods. Math. Models Methods Appl. Sci. 199 (2013) 199–214. | DOI | MR | Zbl

L. Beirão Da Veiga, F. Brezzi and L.D. Marini, Virtual elements for linear elasticity problems. SIAM J. Numer. Anal. 2 (2013) 794–812. | DOI | MR | Zbl

L. Beirão Da Veiga, F. Brezzi, L.D. Marini and A. Russo, H(div) and H(curl)-conforming VEM. Numer. Math. 133 (2016) 303–332. | MR | Zbl

L. Beirão Da Veiga, F. Brezzi, L.D. Marini and A. Russo, Mixed virtual element methods for general second order elliptic problems on polygonal meshes. ESAIM: M2AN 50 (2016) 727–747. | DOI | Numdam | MR | Zbl

L. Beirão da Veiga, K. Lipnikov and G. Manzini, The Mimetic Finite Difference Method for Elliptic Problems. Vol. 11 of Modeling, Simulation and Applications. Springer (2014). | MR | Zbl

D. Boffi, F. Brezzi and M. Fortin, Mixed finite element methods and applications. Vol. 44 of Springer Series in Computational Mathematics. Springer, Heidelberg (2013). | MR | Zbl

J. Bonelle and A. Ern, Analysis of compatible discrete operator schemes for elliptic problems on polyhedral meshes. ESAIM: M2AN 48 (2014) 553–581. | DOI | Numdam | MR | Zbl

F. Brezzi, A. Buffa and K. Lipnikov, Mimetic finite difference for elliptic problem. ESAIM: M2AN 43 (2009) 277–295. | DOI | Numdam | MR | Zbl

F. Brezzi, J. Douglas and L.D. Marini, Two families of mixed finite elements for second order elliptic problems. Numer. Math. 47 (1985) 217–235. | DOI | MR | Zbl

F. Brezzi, R.S. Falk and L.D. Marini, Basic principles of mixed virtual element methods. ESAIM: M2AN 48 (2014) 1227–1240. | DOI | Numdam | MR | Zbl

F. Brezzi, K. Lipnikov and M. Shashkov, Convergence of the mimetic finite difference method for diffusion problems on polyhedral meshes. SIAM J. Numer. Anal. 43 (2005) 1872–1896. | DOI | MR | Zbl

A. Cangiani, E. H. Georgoulis and P. Houston, hp-version discontinuous Galerkin methods on polygonal and polyhedral meshes. Math. Models Methods Appl. Sci. 24 (2014) 2009–2041. | DOI | MR | Zbl

P. Castillo, B. Cockburn, I. Perugia and D. Schötzau, An a priori error analysis of the local discontinuous Galerkin method for elliptic problems. SIAM J. Numer. Anal. 38 (2000) 1676–1706. | DOI | MR | Zbl

Z. Chen, Equivalence between and multigrid algorithms for nonconforming and mixed methods for second-order elliptic problems. East-West J. Numer. Math. 4 (1996) 1–33. | MR | Zbl

B. Cockburn, D.A. Di Pietro and A. Ern, Bridging the Hybrid High-Order and Hybridizable Discontinuous Galerkin methods. ESAIM: M2AN 50 (2016) 635–650. | DOI | Numdam | MR | Zbl

B. Cockburn and G. Fu, Superconvergence by M-decompositions. Part II: construction of two-dimensional finite elements. ESAIM: M2AN 51 (2017) 165–186. | DOI | Numdam | MR | Zbl

B. Cockburn and G. Fu, Superconvergence by M-decompositions. Part III: construction of three-dimensional finite elements. ESAIM: M2AN 51 (2017) 365–398. | DOI | Numdam | MR | Zbl

B. Cockburn, J. Gopalakrishnan and R. Lazarov, Unified hybridization of discontinuous Galerkin, mixed, and continuous Galerkin methods for second order elliptic problems. SIAM J. Numer. Anal. 47 (2009) 1319–1365. | DOI | MR | Zbl

L. Codecasa, R. Specogna and F. Trevisan, A new set of basis functions for the discrete geometric approach. J. Comput. Phys. 19 (2010) 7401–7410. | DOI | MR | Zbl

M. Crouzeix and P.-A. Raviart, Conforming and nonconforming finite element methods for solving the stationary Stokes equations. RAIRO: M2AN 7 (1973) 33–75. | Numdam | MR | Zbl

D.A. Di Pietro, Cell centered Galerkin methods for diffusive problems. ESAIM: M2AN 46 (2012) 111–144. | DOI | Numdam | MR | Zbl

D.A. Di Pietro, On the conservativity of cell centered Galerkin methods. C. R. Acad. Sci Paris, Ser. I 351 (2013) 155–159. | DOI | MR | Zbl

D.A. Di Pietro and J. Droniou, A Hybrid High-Order method for Leray–Lions elliptic equations on general meshes. Math. Comput. 86 (2016) 2159–2191. | DOI | MR | Zbl

D.A. Di Pietro and J. Droniou, W s,p -approximation properties of elliptic projectors on polynomial spaces, with application to the error analysis of a Hybrid High-Order discretisation of Leray–Lions problems. Math. Models Methods Appl. Sci. 27 (2017) 879–908. | DOI | MR | Zbl

D.A. Di Pietro, J. Droniou and A. Ern, A discontinuous-skeletal method for advection-diffusion-reaction on general meshes. SIAM J. Numer. Anal. 53 (2015) 2135–2157. | DOI | MR | Zbl

D.A. Di Pietro and A. Ern, Mathematical aspects of discontinuous Galerkin methods. Vol. 69 of Math. Appl. Springer-Verlag, Berlin (2012). | MR | Zbl

D.A. Di Pietro and A. Ern, A hybrid high-order locking-free method for linear elasticity on general meshes. Comput. Meth. Appl. Mech. Engrg. 283 (2015) 1–21. | DOI | MR | Zbl

D.A. Di Pietro and A. Ern, Arbitrary-order mixed methods for heterogeneous anisotropic diffusion on general meshes. IMA J. Numer. Anal. 37 (2016) 40–63. | DOI | MR | Zbl

D.A. Di Pietro, A. Ern and S. Lemaire, An arbitrary-order and compact-stencil discretization of diffusion on general meshes based on local reconstruction operators. Comput. Meth. Appl. Math. 14 (2014) 461–472. | DOI | MR | Zbl

D.A. Di Pietro, A. Ern and S. Lemaire, Building bridges: Connections and challenges in modern approaches to numerical partial differential equations, chapter A review of Hybrid High-Order methods: formulations, computational aspects, comparison with other methods. No 114 in Lect. Notes in Comput. Sci. Eng. Springer (2016) 205–236. | MR

D.A. Di Pietro and R. Tittarelli, Numerical methods for PDEs. Lectures from the fall 2016 thematic quarter at Institut Henri Poincaré, chapter An introduction to Hybrid High-Order methods. SEMA SIMAI series. Springer (2017). Preprint [math.NA]. | arXiv | MR

J. Droniou and R. Eymard, A mixed finite volume scheme for anisotropic diffusion problems on any grid. Numer. Math. 105 (2006) 35–71. | DOI | MR | Zbl

J. Droniou, R. Eymard, T. Gallouët and R. Herbin, A unified approach to mimetic finite difference, hybrid finite volume and mixed finite volume methods. Math. Models Methods Appl. Sci. 20 (2010) 1–31. | DOI | MR | Zbl

J. Droniou, R. Eymard, T. Gallouet and R. Herbin, Gradient schemes: a generic framework for the discretisation of linear, nonlinear and nonlocal elliptic and parabolic equations. Math. Models Methods Appl. Sci. 23 (2013) 2395–2432. | DOI | MR | Zbl

J. Droniou and N. Nataraj, Improved L 2 estimate for gradient schemes and super-convergence of the TPFA finite volume scheme. To appear in IMA J. Numer. Anal. (2017). Preprint [math.NA]. | arXiv | MR

T. Dupont and R. Scott, Polynomial approximation of functions in Sobolev spaces. Math. Comput. 34 (1980) 441–463. | DOI | MR | Zbl

R. Eymard, T. Gallouët and R. Herbin, Discretization of heterogeneous and anisotropic diffusion problems on general nonconforming meshes. SUSHI: a scheme using stabilization and hybrid interfaces. IMA J. Numer. Anal. 30 (2010) 1009–1043. | DOI | MR | Zbl

R. Eymard, C. Guichard and R. Herbin, Small-stencil 3D schemes for diffusive flows in porous media. ESAIM: M2AN 46 (2012) 265–290. | DOI | Numdam | MR | Zbl

C. Lehrenfeld, Hybrid Discontinuous Galerkin methods for solving incompressible flow problems. Ph.D. thesis, Rheinisch-Westfälischen Technischen Hochschule Aachen (2010).

K. Lipnikov and G. Manzini, A high-order mimetic method on unstructured polyhedral meshes for the diffusion equation. J. Comput. Phys. 272 (2014) 360–385. | DOI | MR | Zbl

L.D. Marini, An inexpensive method for the evaluation of the solution of the lowest order Raviart–Thomas mixed method. SIAM J. Numer. Anal. 22 (1985) 493–496. | DOI | MR | Zbl

P.A. Raviart and J.M. Thomas, A mixed finite element method for 2nd order elliptic problems. In Mathematical Aspects of the Finite Element Method, edited by I. Galligani and E. Magenes. Springer, New York (1977). | MR | Zbl

E. Tonti, On the formal structure of physical theories. Istituto di Matematica del Politecnico di Milano (1975).

M. Vohralík and B.I. Wohlmuth, Mixed finite element methods: implementation with one unknown per element, local flux expressions, positivity, polygonal meshes, and relations to other methods. Math. Models Methods Appl. Sci. 23 (2013) 803–838. | DOI | MR | Zbl

Cité par Sources :