Biomembranes and vesicles consisting of multiple phases can attain a multitude of shapes, undergoing complex shape transitions. We study a Cahn–Hilliard model on an evolving hypersurface coupled to Navier–Stokes equations on the surface and in the surrounding medium to model these phenomena. The evolution is driven by a curvature energy, modelling the elasticity of the membrane, and by a Cahn–Hilliard type energy, modelling line energy effects. A stable semidiscrete finite element approximation is introduced and, with the help of a fully discrete method, several phenomena occurring for two-phase membranes are computed.
Accepté le :
DOI : 10.1051/m2an/2017037
Mots-clés : Fluidic membranes, incompressible two-phase Navier–Stokes flow, parametric finite elements, Helfrich energy, spontaneous curvature, local surface area conservation, line energy, surface phase field model, surface Cahn–Hilliard equation, Marangoni-type effects
@article{M2AN_2017__51_6_2319_0, author = {Barrett, John W. and Garcke, Harald and N\"urnberg, Robert}, title = {Finite element approximation for the dynamics of fluidic two-phase biomembranes}, journal = {ESAIM: Mathematical Modelling and Numerical Analysis }, pages = {2319--2366}, publisher = {EDP-Sciences}, volume = {51}, number = {6}, year = {2017}, doi = {10.1051/m2an/2017037}, zbl = {1383.35153}, mrnumber = {3745174}, language = {en}, url = {http://archive.numdam.org/articles/10.1051/m2an/2017037/} }
TY - JOUR AU - Barrett, John W. AU - Garcke, Harald AU - Nürnberg, Robert TI - Finite element approximation for the dynamics of fluidic two-phase biomembranes JO - ESAIM: Mathematical Modelling and Numerical Analysis PY - 2017 SP - 2319 EP - 2366 VL - 51 IS - 6 PB - EDP-Sciences UR - http://archive.numdam.org/articles/10.1051/m2an/2017037/ DO - 10.1051/m2an/2017037 LA - en ID - M2AN_2017__51_6_2319_0 ER -
%0 Journal Article %A Barrett, John W. %A Garcke, Harald %A Nürnberg, Robert %T Finite element approximation for the dynamics of fluidic two-phase biomembranes %J ESAIM: Mathematical Modelling and Numerical Analysis %D 2017 %P 2319-2366 %V 51 %N 6 %I EDP-Sciences %U http://archive.numdam.org/articles/10.1051/m2an/2017037/ %R 10.1051/m2an/2017037 %G en %F M2AN_2017__51_6_2319_0
Barrett, John W.; Garcke, Harald; Nürnberg, Robert. Finite element approximation for the dynamics of fluidic two-phase biomembranes. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 51 (2017) no. 6, pp. 2319-2366. doi : 10.1051/m2an/2017037. http://archive.numdam.org/articles/10.1051/m2an/2017037/
Relaxation dynamics of fluid membranes. Phys. Rev. E 79 (2009) 031915. | DOI | MR
and ,On the parametric finite element approximation of evolving hypersurfaces in ℝ3. J. Comput. Phys. 227 (2008) 4281–4307. | DOI | MR | Zbl
, and ,Stable phase field approximations of anisotropic solidification. IMA J. Numer. Anal. 34 (2014) 1289–1327. | DOI | MR | Zbl
, and ,A stable parametric finite element discretization of two-phase Navier–Stokes flow. J. Sci. Comput. 63 (2015) 78–117. | DOI | MR | Zbl
, and ,Computational parametric Willmore flow with spontaneous curvature and area difference elasticity effects. SIAM J. Numer. Anal. 54 (2016) 1732–1762. | DOI | MR | Zbl
, and ,A stable numerical method for the dynamics of fluidic biomembranes. Numer. Math. 134 (2016) 783–822. | DOI | MR | Zbl
, and ,Finite element approximation for the dynamics of asymmetric fluidic biomembranes. Math. Comput. 86 (2017) 1037–1069. | DOI | MR | Zbl
, and ,Stable variational approximations of boundary value problems for Willmore flow with Gaussian curvature. IMA J. Numer. Anal. 37 (2017) 1657–1709. | MR | Zbl
, and ,Finite element approximation of a phase field model for void electromigration. SIAM J. Numer. Anal. 42 (2004) 738–772. | DOI | MR | Zbl
, and ,Membrane elasticity in giant vesicles with fluid phase coexistence. Biophys. J. 89 (2005) 1067–1080. | DOI
, , and ,Imaging coexisting fluid domains in biomembrane models coupling curvature and line tension. Nature 425 (2003) 821–824. | DOI
, and ,The Cahn–Hilliard gradient theory for phase separation with non-smooth free energy. Part II: Numerical analysis. European J. Appl. Math. 3 (1992) 147–179. | DOI | MR | Zbl
and ,On the two-phase Navier-Stokes equations with Boussinesq–Scriven surface fluid. J. Math. Fluid Mech. 12 (2010) 133–150. | DOI | MR | Zbl
and ,Global minimizers for axisymmetric multiphase membranes. ESAIM: COCV 19 (2013) 1014–1029. | Numdam | MR | Zbl
, and ,The effect of spontaneous curvature on a two-phase vesicle. Nonlinearity 28 (2015) 773–793. | DOI | MR | Zbl
and ,Neck geometry and shape transitions in vesicles with co-existing fluid phases: Role of Gaussian curvature stiffness vs. spontaneous curvature. Eur. Lett. 86 (2009) 48003. | DOI
, and ,Computation of geometric partial differential equations and mean curvature flow. Acta Numer. 14 (2005) 139–232. | DOI | MR | Zbl
, and ,Budding and fission of vesicles. Biophys. J. 65 (1993) 1396–1403. | DOI
, , , and ,An algorithm for evolutionary surfaces. Numer. Math. 58 (1991) 603–611. | DOI | MR | Zbl
,Computational parametric Willmore flow. Numer. Math. 111 (2008) 55–80. | DOI | MR | Zbl
,Finite element methods for surface PDEs. Acta Numer. 22 (2013) 289–396. | DOI | MR | Zbl
and ,C.M. Elliott, The Cahn–Hilliard model for the kinetics of phase transitions. Edited by J.F. Rodrigues. In vol. 88 of Mathematical Models for Phase Change Problems, International Series of Numerical Mathematics. Birkhäuser, Basel (1989) 35–73. | MR | Zbl
Evolving surface finite element method for the Cahn–Hilliard equation. Numer. Math. 129 (2015) 483–534. | DOI | MR | Zbl
and ,Modeling and computation of two phase geometric biomembranes using surface finite elements. J. Comput. Phys. 229 (2010) 6585–6612. | DOI | MR | Zbl
and ,A surface phase field model for two-phase biological membranes. SIAM J. Appl. Math. 70 (2010) 2904–2928. | DOI | MR | Zbl
and ,Computation of two-phase biomembranes with phase dependent material parameters using surface finite elements. Commun. Comput. Phys. 13 (2013) 325–360. | DOI | MR | Zbl
and ,V. Girault and P.-A. Raviart, Finite element methods for Navier–Stokes equations, Theory and algorithms. In Vol. 5 of Springer Ser. Comput. Math. Springer Verlag, Berlin (1986). | MR | Zbl
Snapping elastic curves as a one-dimensional analogue of two-component lipid bilayers. Math. Models Methods Appl. Sci. 21 (2011) 1027–1042. | DOI | MR | Zbl
,Kinks in two-phase lipid bilayer membranes. Calc. Var. Partial Differ. Equ. 48 (2013) 211–242. | DOI | MR | Zbl
,Convergence of an approximation for rotationally symmetric two-phase lipid bilayer membranes. Q. J. Math. 66 (2015) 143–170. | DOI | MR | Zbl
,Shape transformations of vesicles with intramembrane domains. Phys. Rev. E 53 (1996) 2670–2683. | DOI
and ,D. Lengeler, On a Stokes-type system arising in fluid vesicle dynamics. Preprint (2015). | arXiv
Budding of membranes induced by intramembrane domains. J. Phys. II France 2 (1992) 1825–1840.
,Phase-field modeling of the dynamics of multicomponent vesicles: Spinodal decomposition, coarsening, budding, and fission. Phys. Rev. E 79 (2009) 0311926. | DOI | MR
, and ,Bud-neck scaffolding as a possible driving force in ESCRT-induced membrane budding. Biophys. J. 108 (2015) 833–843. | DOI
and ,Modeling and computing of deformation dynamics of inhomogeneous biological surfaces. SIAM J. Appl. Math. 73 (2013) 1768–1792. | DOI | MR | Zbl
, , and ,A multiscale approach to curvature modulated sorting in biological membranes. J. Theoret. Biol. 301 (2012) 67–82. | DOI | MR | Zbl
, , , , and ,Boundary value problems for variational integrals involving surface curvatures. Quart. Appl. Math. 51 (1993) 363–387. | DOI | MR | Zbl
,A. Novick-Cohen, The Cahn–Hilliard equation. In Handbook of differential equations: evolutionary equations. Vol. IV, Elsevier/North-Holland. Amsterdam, Handb. Differ. Equ. (2008) 201–228. | MR | Zbl
A. Schmidt and K.G. Siebert, Design of Adaptive Finite Element Software: The Finite Element Toolbox ALBERTA, vol. 42 of Lect. Notes Comput. Sci. Eng. Springer Verlag, Berlin (2005). | MR | Zbl
Shape derivatives for general objective functions and the incompressible Navier–Stokes equations. Control Cybernet. 39 (2010) 677–713. | MR | Zbl
and ,J.C. Slattery, L. Sagis and E.-S. Oh, Interfacial Transport Phenomena. Springer, New York, 2nd edn. (2007). | MR | Zbl
F. Tröltzsch, Optimal Control of Partial Differential Equations: Theory, Methods and Applications, vol. 112 of Graduate Studies in Mathematics. American Mathematical Society, Providence, RI (2010). | MR | Zbl
Challenges in theoretical investigations of configurations of lipid membranes. Chin. Phys. B 22 (2013) 28701. | DOI
,Separation of liquid phases in giant vesicles of ternary mixtures of phospholipids and cholesterol. Biophys. J. 85 (2003) 3074–3083. | DOI
and ,Modelling and simulations of multi-component lipid membranes and open membranes via diffuse interface approaches. J. Math. Biol. 56 (2008) 347–371. | DOI | MR | Zbl
and ,Cité par Sources :