A Mach-sensitive splitting approach for Euler-like systems
ESAIM: Mathematical Modelling and Numerical Analysis , Tome 52 (2018) no. 1, pp. 207-253.

Herein, a Mach-sensitive fractional step approach is proposed for Euler-like systems. The key idea is to introduce a time-dependent splitting which dynamically decouples convection from acoustic phenomenon following the fluctuations of the flow Mach number. By doing so, one seeks to maintain the accuracy of the computed solution for all Mach number regimes. Indeed, when the Mach number takes high values, a time-explicit resolution of the overall Euler-like system is entirely performed in one of the present splitting step. On the contrary, in the low-Mach number case, convection is totally separated from the acoustic waves production. Then, by performing an appropriate correction on the acoustic step of the splitting, the numerical diffusion can be significantly reduced. A study made on both convective and acoustic subsystems of the present approach has revealed some key properties as hyperbolicity and positivity of the density and internal energy in the case of an ideal gas thermodynamics. The one-dimensional results made on a wide range of Mach numbers using an ideal and a stiffened gas thermodynamics show that the present approach is as accurate and CPU-consuming as a state of the art Lagrange-Projection-type method.

DOI : 10.1051/m2an/2017063
Classification : 35L40, 76N15
Mots-clés : Operator splitting, fractional step, hyperbolic, low mach number flows, relaxation schemes
Iampietro, D. 1 ; Daude, F. 1 ; Galon, P. 1 ; Hérard, J.-M. 1

1
@article{M2AN_2018__52_1_207_0,
     author = {Iampietro, D. and Daude, F. and Galon, P. and H\'erard, J.-M.},
     title = {A {Mach-sensitive} splitting approach for {Euler-like} systems},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis },
     pages = {207--253},
     publisher = {EDP-Sciences},
     volume = {52},
     number = {1},
     year = {2018},
     doi = {10.1051/m2an/2017063},
     zbl = {1394.76075},
     mrnumber = {3808159},
     language = {en},
     url = {http://archive.numdam.org/articles/10.1051/m2an/2017063/}
}
TY  - JOUR
AU  - Iampietro, D.
AU  - Daude, F.
AU  - Galon, P.
AU  - Hérard, J.-M.
TI  - A Mach-sensitive splitting approach for Euler-like systems
JO  - ESAIM: Mathematical Modelling and Numerical Analysis 
PY  - 2018
SP  - 207
EP  - 253
VL  - 52
IS  - 1
PB  - EDP-Sciences
UR  - http://archive.numdam.org/articles/10.1051/m2an/2017063/
DO  - 10.1051/m2an/2017063
LA  - en
ID  - M2AN_2018__52_1_207_0
ER  - 
%0 Journal Article
%A Iampietro, D.
%A Daude, F.
%A Galon, P.
%A Hérard, J.-M.
%T A Mach-sensitive splitting approach for Euler-like systems
%J ESAIM: Mathematical Modelling and Numerical Analysis 
%D 2018
%P 207-253
%V 52
%N 1
%I EDP-Sciences
%U http://archive.numdam.org/articles/10.1051/m2an/2017063/
%R 10.1051/m2an/2017063
%G en
%F M2AN_2018__52_1_207_0
Iampietro, D.; Daude, F.; Galon, P.; Hérard, J.-M. A Mach-sensitive splitting approach for Euler-like systems. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 52 (2018) no. 1, pp. 207-253. doi : 10.1051/m2an/2017063. http://archive.numdam.org/articles/10.1051/m2an/2017063/

[1] R. Baraille, G. Bourdin, F. Dubois and A.Y. Le Roux, Une version à pas fractionnaires du schéma de Godunov pour l’hydrodynamique. C. R. Acad. Sci. 314 (1992) 147–152. | MR | Zbl

[2] M. Baudin, C. Berthon, F. Coquel, R. Masson and Q.H. Tran, A relaxation method for two-phase flow models with hydrodynamic closure laws. Numer. Math. 99 (2005) 411–440. | DOI | MR | Zbl

[3] M. Baudin, F. Coquel and Q.H. Tran, A semi-implicit relaxation scheme for modelling two-phase flow in a pipeline. SIAM J. Sci. Comput. 27 (2005) 914–936. | DOI | MR | Zbl

[4] F. Bouchut, Entropy satisfying flux vector splittings and kinetic BGK models. Numer. Math. 94 (2003) 623–672. | DOI | MR | Zbl

[5] F. Bouchut, A reduced stability condition for nonlinear relaxation to conservation laws. J. Hyperbolic Differ. Eq. 1 (2004) 149–170. | DOI | MR | Zbl

[6] F. Bouchut, Nonlinear Stability of Finite Volume Methods for Hyperbolic Conservation Laws. Birkäuser (2004). | DOI | MR

[7] T. Buffard and J.-M. Hérard, A conservative fractional step method to solve non-isentropic Euler equations. Comput. Methods Appl. Mech. Eng. 144 (1996) 199–225. | DOI | MR | Zbl

[8] T. Buffard, T. Gallouët and J.-M. Hérard, A sequel to a rough Godunov scheme: application to real gases. Comput. Fluids 29 (2000) 813–847. | DOI | MR | Zbl

[9] C. Chalons and J.F. Coulombel, Relaxations approximation of the Euler equations. J. Math. Anal. Appl. 348 (2008) 872–893. | DOI | MR | Zbl

[10] C. Chalons, M. Girardin and S. Kokh, An all-regime Lagrange-Projection like scheme for 2D homogeneous models for two-phase flows on unstructured meshes. J. Comput. Phys. 335 (2016) 885–904. | DOI | MR | Zbl

[11] C. Chalons, M. Girardin and S. Kokh, An all-regime Lagrange-Projection like scheme for the gas dynamics equations on unstructured meshes. Commun. Comput. Phys. 20 (2016) 188–233. | DOI | MR | Zbl

[12] G.Q. Chen, C.D. Levermore and T.-P. Liu, Hyperbolic conservation laws with stiff relaxation terms and entropy. Commun. Pure Appl. Math. 47 (1994) 787–830. | DOI | MR | Zbl

[13] F. Coquel, E. Godlewski and N. Seguin, Relaxation of fluid systems. Math. Models Methods Appl. Sci. 22 (2012) 43–95. | DOI | MR | Zbl

[14] F. Coquel, Q.L. Nguyen, M. Postel and Q.H. Tran, Entropy-satisfying relaxation method with large time-steps for Euler IBVPS. Math. Comput. 79 (2010) 1493–1533. | DOI | MR | Zbl

[15] F. Coquel, E. Godlewski, B. Perthame, A. In and P. Rascle, Some new Godunov and relaxation methods for two-phase flow problems. Kluwer Academic/Plenum Publishers, New York (2001) 179–188. | MR | Zbl

[16] S. Dallet, Simulation numérique d’écoulements diphasiques en régime compressible ou à faible nombre de Mach. Ph.D. thesis, Aix-Marseille Université (2017).

[17] P. Degond and M. Tang, All speed scheme for the low Mach number limit of the isentropic Euler equation. Commun. Comput. Phys. 10 (2011) 1–31. | DOI | MR | Zbl

[18] S. Dellacherie, Analysis of Godunov type schemes applied to the compressible Euler system at low Mach number. J. Comput. Phys. 229 (2009) 978–1016. | DOI | MR | Zbl

[19] S. Dellacherie, P. Omnes and F. Rieper, The influence of cell geometry on the Godunov scheme applied to the linear wave equation.J. Comput. Phys. 229 (2010) 5315–5338. | DOI | MR | Zbl

[20] S. Dellacherie, P. Omnes, J. Jung and P.A. Raviart, Construction of modified Godunov type schemes accurate at any Mach number for the compressible Euler system. Math. Models Methods Appl. Sci. 26 (2016) 2525–2615. | DOI | MR | Zbl

[21] G. Dimarco, R. Loubère and M.-H. Vignal, Study of a new asymptotic preserving scheme for the Euler system in the low Mach number limit. SIAM: J. Sci. Comput. 39 (2017) 2099–2128. | MR

[22] P. Fillion, A. Chanoine, S. Dellacherie and A. Kumbaro, FLICA-OVAP: a new platform for core thermalhydraulic studies. Nucl. Eng. Des. 241 (2011) 4348–4358. | DOI

[23] T. Gallouët, J.-M Hérard and N. Seguin, Some recent finite volume schemes to compute Euler equations using real gas EOS. Int. J. Numer. Methods Fluids 39 (2002) 1073–1138. | DOI | MR | Zbl

[24] T. Gallouët, J.-M Hérard and N. Seguin, Numerical modeling of two-phase flows using the two-fluid two-pressure approach. Math. Models Methods Appl. Sci. 14 (2004) 663–700. | DOI | MR | Zbl

[25] M. Girardin, Asymptotic preserving and all-regime Lagrange-Projection like numerical schemes: application to two-phase flows in low Mach regime. Ph.D. thesis, Université Pierre et Marie Curie (2015). https://tel.archives-ouvertes.fr/tel-01127428

[26] E. Godlewski and P.A. Raviart, Numerical Approximation of Hyperbolic Systems of Conservation Laws. Springer (1996). | DOI | MR | Zbl

[27] H. Guillard and A. Murrone, On the behavior of upwind schemes in the low Mach number limit: II Godunov type schemes. Comput. Fluids 33 (2004) 655–675. | DOI | Zbl

[28] H. Guillard and C. Viozat, On the behavior of upwind schemes in the low Mach number limit. Comput. Fluids 28 (1999) 63–86. | DOI | MR | Zbl

[29] J. Haack, S. Jin and J.G. Liu, An all-speed asymptotic-preserving method for the isentropic Euler and Navier-Stokes equations. Commun. Comput. Phys. 12 (2012) 955–980. | DOI | MR | Zbl

[30] A. Harten, P.D. Lax and B. Van Leer, On upstream differencing and Godunov-type schemes for hyperbolic conservation laws. SIAM Rev. 25 (1983) 35–61. | DOI | MR | Zbl

[31] D. Iampietro, F. Daude, P. Galon and J.M. Hérard, A Mach-sensitive implicit-explicit scheme adapted to compressible multi-scale flows. J. Comput. Appl. Math. 340 (2018) 122–150. | DOI | MR | Zbl

[32] D. Iampietro, F. Daude, P. Galon and J.M. Hérard, A weighted splitting approach for low-Mach number flows, in Finite Volumes for Complex Applications VIII-Hyperbolic, Elliptic and Parabolic Problems: FVCA 8 200 (2017). | DOI | MR | Zbl

[33] S. Jin and Z.-P. Xin, The relaxation schemes for systems of conservation laws in arbitrary dimensions. Commun. Pure Appl. Math. 48 (1995) 235–276. | DOI | MR | Zbl

[34] S. Noelle, G. Bispen, K.R. Arun, M. Lukáčová-Medvid’Ová and C.D. Munz, A weakly asymptotic preserving low Mach number scheme for the Euler equations of gas dynamics. SIAM J. Sci. Comput. 36 (2014) B989–B1024. | DOI | MR | Zbl

[35] F. Rieper, A low-Mach number fix for Roes approximate Riemann solver. J. Comput. Phys. 230 (2011) 5263–5287. | DOI | MR | Zbl

[36] S. Schochet and G. Metivier, Fast singular limits of hyperbolic PDEs. J. Differ. Equ. 114 (1994) 476–512. | DOI | MR | Zbl

[37] S. Schochet and G. Metivier, Limite incompressible des équations d’Euler non-isentropiques. Preprint https://www.math.u-bordeaux.fr/~gmetivie/Preprints.html (2000). | Numdam | MR | Zbl

[38] S. Schochet and G. Metivier, The incompressible limit of Euler non-isentropic equations. Arch. Ration. Mech. Anal. 158 (2001) 61–90. | DOI | MR | Zbl

[39] A.R. Simpson, Large water hammer pressures due to column separation in sloping pipes. PhD thesis, Diss. University of Michigan(1986).

[40] J. Smoller, Shock Waves and Reaction-Diffusion Equations. Springer-Verlag (1994). | DOI | MR | Zbl

[41] G.A. Sod, Numerical Methods in Fluid Dynamics, Initial and Initial-boundary Value Problems. Cambridge University Press (1985). | DOI | MR | Zbl

[42] I. Suliciu, On the thermodynamics of fluids with relaxation and phase transitions. Int. J. Eng. Sci. 36 (1998) 921–947. | DOI | MR | Zbl

[43] E.F. Toro, Riemann Solvers and Numerical Methods for Fluid Dynamics. Springer (1999). | DOI | MR | Zbl

[44] J.B. Whitham, Linear and Non Linear Waves. John Wiley & Sons Inc (1974). | MR | Zbl

Cité par Sources :