We present a novel Hybrid High-Order (HHO) discretization of fourth-order elliptic problems arising from the mechanical modeling of the bending behavior of Kirchhoff–Love plates, including the biharmonic equation as a particular case. The proposed HHO method supports arbitrary approximation orders on general polygonal meshes, and reproduces the key mechanical equilibrium relations locally inside each element. When polynomials of degree
Mots-clés : Hybrid High-Order methods, Kirchhoff–Love plates, biharmonic problems, energy projector
@article{M2AN_2018__52_2_393_0, author = {Bonaldi, Francesco and Di Pietro, Daniele A. and Geymonat, Giuseppe and Krasucki, Fran\c{c}oise}, title = {A {Hybrid} {High-Order} method for {Kirchhoff{\textendash}Love} plate bending problems}, journal = {ESAIM: Mathematical Modelling and Numerical Analysis }, pages = {393--421}, publisher = {EDP-Sciences}, volume = {52}, number = {2}, year = {2018}, doi = {10.1051/m2an/2017065}, zbl = {1404.65251}, mrnumber = {3834430}, language = {en}, url = {https://www.numdam.org/articles/10.1051/m2an/2017065/} }
TY - JOUR AU - Bonaldi, Francesco AU - Di Pietro, Daniele A. AU - Geymonat, Giuseppe AU - Krasucki, Françoise TI - A Hybrid High-Order method for Kirchhoff–Love plate bending problems JO - ESAIM: Mathematical Modelling and Numerical Analysis PY - 2018 SP - 393 EP - 421 VL - 52 IS - 2 PB - EDP-Sciences UR - https://www.numdam.org/articles/10.1051/m2an/2017065/ DO - 10.1051/m2an/2017065 LA - en ID - M2AN_2018__52_2_393_0 ER -
%0 Journal Article %A Bonaldi, Francesco %A Di Pietro, Daniele A. %A Geymonat, Giuseppe %A Krasucki, Françoise %T A Hybrid High-Order method for Kirchhoff–Love plate bending problems %J ESAIM: Mathematical Modelling and Numerical Analysis %D 2018 %P 393-421 %V 52 %N 2 %I EDP-Sciences %U https://www.numdam.org/articles/10.1051/m2an/2017065/ %R 10.1051/m2an/2017065 %G en %F M2AN_2018__52_2_393_0
Bonaldi, Francesco; Di Pietro, Daniele A.; Geymonat, Giuseppe; Krasucki, Françoise. A Hybrid High-Order method for Kirchhoff–Love plate bending problems. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 52 (2018) no. 2, pp. 393-421. doi : 10.1051/m2an/2017065. https://www.numdam.org/articles/10.1051/m2an/2017065/
[1] Hybridization of mixed high-order methods on general meshes and application to the Stokes equations. Comput. Methods Appl. Math. 15 (2015) 111–134. | DOI | MR | Zbl
, and ,[2] Bending moment mixed method for the Kirchhoff–Love plate model. SIAM J. Numer. Anal. 40 (2002) 1632–1649. | DOI | MR | Zbl
, and ,[3] A C1 virtual element method for the Cahn–Hilliard equation with polygonal meshes. SIAM J. Numer. Anal. 54 (2016) 34–56. | DOI | MR | Zbl
, , and ,[4] The fully nonconforming virtual element method for biharmonic problems. Preprint (2016). | arXiv | MR
, , ,[5] Mixed and nonconforming finite element methods: implementation, postprocessing and error estimates. RAIRO Model. Math. Anal. Numer. 19 (1985) 7–32. | DOI | Numdam | MR | Zbl
and ,[6] Finite Element Procedures. Prentice-Hall, Englewood Cliffs, NJ (1996). | Zbl
,[7] A note on the Poincaré inequality for convex domains. Z. Anal. Anwend. 22 (2003) 751–756. | DOI | MR | Zbl
,[8] A mixed method for the biharmonic problem based on a system of first-order equations. SIAM J. Numer. Anal. 49 (2011) 789–817. | DOI | MR | Zbl
and ,[9] A virtual element method with arbitrary regularity. IMA J. Numer. Anal. 34 (2014) 759–781. | DOI | MR | Zbl
and ,[10] On the boundary value problem of the biharmonic operator on domains with angular corners. Math. Methods Appl. Sci. 2 (1980) 556–581. | DOI | MR | Zbl
and ,[11] Mixed Finite Element Methods and Applications. Springer-Verlag (2013). | DOI | MR | Zbl
, , ,[12] Unified formulation and analysis of mixed and primal discontinuous skeletal methods on polytopal meshes. ESAIM: M2AN 52 (2018) 1–28. | DOI | Numdam | MR | Zbl
and ,[13] C0 interior penalty methods, in Frontiers in Numerical Analysis – Durham 2010 Series. Lecture Notes in Computational Science and Engineering. Springer (2010) 79–147. | MR | Zbl
,[14] The Mathematical Theory of Finite Element Methods, 3rd edition. Springer (2008). | DOI | MR | Zbl
, ,[15] The great beauty of VEMs, in Proc. of the ICM 2014. Vol I of Plenary Lectures (2015) 217–235. | MR | Zbl
,[16] Mixed and Hybrid Finite Element Methods. Springer-Verlag, New York (1991). | DOI | MR | Zbl
, ,[17] Virtual Element Methods for plate bending problems. Comput. Methods Appl. Mech. Eng. 253 (2013) 455–462. | DOI | MR | Zbl
, ,[18] A hybrid high-order method for the Cahn–Hilliard problem in mixed form. SIAM J. Numer. Anal. 54 (2016) 1873–1898. | DOI | MR | Zbl
, , , and ,[19] Virtual Element Method for fourth order problems: L2-estimates. Comput. Math. Appl. 72 (2016) 1959–1967. | DOI | MR | Zbl
and ,[20] The Finite Element Method for Elliptic Problems. North-Holland (1978). Revised reprint SIAM (2002). | MR | Zbl
,[21] A hybridizable and superconvergent discontinuous Galerkin method for biharmonic problems. J. Sci. Comput. 40 (2009) 141–187. | DOI | MR | Zbl
, and ,[22] Unified hybridization of discontinuous Galerkin, mixed, and continuous Galerkin methods for second order elliptic problems. SIAM J. Numer. Anal. 47 (2009) 1319–1365. | DOI | MR | Zbl
, , and ,[23] The Hellan–Herrmann–Johnson method: some new error estimates and post-processing. Math. Comput. 52 (1989) 17–29. | DOI | MR | Zbl
,[24] Elliptic Boundary Value Problems on Corner Domains. Lecture Notes in Mathematics. Springer-Verlag (1980). | Zbl
,[25] A Hybrid High-Order method for Leray–Lions elliptic equations on general meshes. Math. Comput. 86 (2017) 2159–2191. | DOI | MR | Zbl
and ,[26] Ws,p-approximation properties of elliptic projectors on polynomial spaces, with application to the error analysis of a Hybrid High-Order discretisation of Leray–Lions problems. Math. Models Methods Appl. Sci. 27 (2017) 879–908. | DOI | MR | Zbl
and ,[27] Mathematical Aspects of Discontinuous Galerkin Methods. Vol. 69 of Mathématiques & Applications. Springer-Verlag, Berlin (2012). | DOI | MR | Zbl
and ,[28] A hybrid high-order locking-free method for linear elasticity on general meshes. Comput. Methods Appl. Mech. Eng. 283 (2015) 1–21. | DOI | MR | Zbl
and ,[29] An introduction to Hybrid High-Order methods, in Numerical methods for PDEs. Lectures from the Fall 2016 Thematic Quarter at Institut Henri Poincaré. SEMA-SIMAI Series. Springer (2017). Preprint (2017). | arXiv | MR
and ,[30] Singularities in Boundary Value Problems. Masson, Paris (1992). | MR | Zbl
,[31] Elliptic Problems in Nonsmooth Domains. SIAM (2011). | DOI | MR | Zbl
,[32] Basic properties of the Schur complement, in The Schur Complement and Its Applications. Vol. 4 of Numerical Methods and Algorithms. Springer, Boston, MA (2005). | DOI | MR
and ,[33] The Finite Element Method: Linear Static and Dynamic Finite Element Analysis, 2nd edition. Prentice-Hall (1996). | Zbl
,[34] On the convergence of a mixed finite-element method for plate bending problems. Numer. Math. 21 (1973) 43–62. | DOI | MR | Zbl
,[35] Some nonconforming finite elements for the plate bending problem. Rev. Française Automat. Informat. Recherche Operationnelle Sér. Rouge Anal. Numer. 9 (1975) 9–53. | Numdam | MR | Zbl
and ,[36] Elliptic Equations in Polyhedral Domains. Vol. 162 of Mathematical Surveys and Monographs. American Mathematical Society (2010). | DOI | MR | Zbl
and ,[37] Weak Galerkin finite element methods for the biharmonic equation on polytopal meshes. Numer. Methods Partial Differ. Equ. 30 (2014) 1003–1029. | DOI | MR | Zbl
, and ,[38] Direct Methods in the Theory of Elliptic Equations. English translation of Les méthodes directes en théorie des équations elliptiques published in 1967 simultaneously by Academia, the Publishing House of the Czechoslovak Academy of Sciences in Prague, and by Masson in Paris. Springer (2012). | DOI | MR | Zbl
,[39] The Finite Element Method in Engineering Science, 1st edition. McGraw-Hill, New York (1971). | MR | Zbl
, in[40] Origins, milestones and directions of the finite element method – a personal view, in Handbook of Numerical Analysis, edited by and . Vol. IV of Finite Element Methods (Part 2) – Numerical Methods for Solids (Part 2) (1996) 5–67. | MR | Zbl
,[41] The nonconforming virtual element method for plate bending problems. Math. Models Methods Appl. Sci. 26 (2016) 1671–1687. | DOI | MR | Zbl
, , and ,- Iterative solution to the biharmonic equation in mixed form discretized by the Hybrid High-Order method, Computers Mathematics with Applications, Volume 171 (2024), p. 154 | DOI:10.1016/j.camwa.2024.07.018
- C 0-hybrid high-order methods for biharmonic problems, IMA Journal of Numerical Analysis, Volume 44 (2024) no. 1, p. 24 | DOI:10.1093/imanum/drad003
- A staggered cell-centered DG method for the biharmonic Steklov problem on polygonal meshes: A priori and a posteriori analysis, Computers Mathematics with Applications, Volume 117 (2022), p. 216 | DOI:10.1016/j.camwa.2022.04.018
- C1-conforming variational discretization of the biharmonic wave equation, Computers Mathematics with Applications, Volume 119 (2022), p. 208 | DOI:10.1016/j.camwa.2022.06.005
- A discrete de Rham method for the Reissner–Mindlin plate bending problem on polygonal meshes, Computers Mathematics with Applications, Volume 125 (2022), p. 136 | DOI:10.1016/j.camwa.2022.08.041
- A fully discrete plates complex on polygonal meshes with application to the Kirchhoff–Love problem, Mathematics of Computation, Volume 92 (2022) no. 339, p. 51 | DOI:10.1090/mcom/3765
- Hybrid High-Order and Weak Galerkin Methods for the Biharmonic Problem, SIAM Journal on Numerical Analysis, Volume 60 (2022) no. 5, p. 2626 | DOI:10.1137/21m1408555
- HDGlab: An Open-Source Implementation of the Hybridisable Discontinuous Galerkin Method in MATLAB, Archives of Computational Methods in Engineering, Volume 28 (2021) no. 3, p. 1941 | DOI:10.1007/s11831-020-09502-5
- General polytopal H(div)-conformal finite elements and their discretisation spaces, ESAIM: Mathematical Modelling and Numerical Analysis, Volume 55 (2021), p. S677 | DOI:10.1051/m2an/2020048
- Hybrid high-order method for singularly perturbed fourth-order problems on curved domains, ESAIM: Mathematical Modelling and Numerical Analysis, Volume 55 (2021) no. 6, p. 3091 | DOI:10.1051/m2an/2021081
- Finite Element Methods for Elliptic Distributed Optimal Control Problems with Pointwise State Constraints (Survey), Advances in Mathematical Sciences, Volume 21 (2020), p. 3 | DOI:10.1007/978-3-030-42687-3_1
- A high-order discontinuous Galerkin approach to the elasto-acoustic problem, Computer Methods in Applied Mechanics and Engineering, Volume 358 (2020), p. 112634 | DOI:10.1016/j.cma.2019.112634
- Linear Elasticity, The Hybrid High-Order Method for Polytopal Meshes, Volume 19 (2020), p. 325 | DOI:10.1007/978-3-030-37203-3_7
- Robust nonconforming virtual element methods for general fourth order problems with varying coefficients, arXiv (2020) | DOI:10.48550/arxiv.2008.01617 | arXiv:2008.01617
- High-order Discontinuous Galerkin methods for the elastodynamics equation on polygonal and polyhedral meshes, Computer Methods in Applied Mechanics and Engineering, Volume 342 (2018), p. 414 | DOI:10.1016/j.cma.2018.08.012
- Nonconforming Finite Element Discretisation for Semilinear Problems with Trilinear Nonlinearity, arXiv (2017) | DOI:10.48550/arxiv.1708.07627 | arXiv:1708.07627
Cité par 16 documents. Sources : Crossref, NASA ADS