We present a multigrid algorithm for the solution of the linear systems of equations stemming from the p-version of the virtual element discretization of a two-dimensional Poisson problem. The sequence of coarse spaces are constructed decreasing progressively the polynomial approximation degree of the virtual element space, as in standard p-multigrid schemes. The construction of the interspace operators relies on auxiliary virtual element spaces, where it is possible to compute higher order polynomial projectors. We prove that the multigrid scheme is uniformly convergent, provided the number of smoothing steps is chosen sufficiently large. We also demonstrate that the resulting scheme provides a uniform preconditioner with respect to the number of degrees of freedom that can be employed to accelerate the convergence of classical Krylov-based iterative schemes. Numerical experiments validate the theoretical results.
Mots-clés : Polygonal meshes, virtual element methods, p Galerkin methods, p multigrid
@article{M2AN_2018__52_1_337_0, author = {Antonietti, Paola F. and Mascotto, Lorenzo and Verani, Marco}, title = {A multigrid algorithm for the p-version of the virtual element method}, journal = {ESAIM: Mathematical Modelling and Numerical Analysis }, pages = {337--364}, publisher = {EDP-Sciences}, volume = {52}, number = {1}, year = {2018}, doi = {10.1051/m2an/2018007}, mrnumber = {3808163}, zbl = {1397.65249}, language = {en}, url = {https://www.numdam.org/articles/10.1051/m2an/2018007/} }
TY - JOUR AU - Antonietti, Paola F. AU - Mascotto, Lorenzo AU - Verani, Marco TI - A multigrid algorithm for the p-version of the virtual element method JO - ESAIM: Mathematical Modelling and Numerical Analysis PY - 2018 SP - 337 EP - 364 VL - 52 IS - 1 PB - EDP-Sciences UR - https://www.numdam.org/articles/10.1051/m2an/2018007/ DO - 10.1051/m2an/2018007 LA - en ID - M2AN_2018__52_1_337_0 ER -
%0 Journal Article %A Antonietti, Paola F. %A Mascotto, Lorenzo %A Verani, Marco %T A multigrid algorithm for the p-version of the virtual element method %J ESAIM: Mathematical Modelling and Numerical Analysis %D 2018 %P 337-364 %V 52 %N 1 %I EDP-Sciences %U https://www.numdam.org/articles/10.1051/m2an/2018007/ %R 10.1051/m2an/2018007 %G en %F M2AN_2018__52_1_337_0
Antonietti, Paola F.; Mascotto, Lorenzo; Verani, Marco. A multigrid algorithm for the p-version of the virtual element method. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 52 (2018) no. 1, pp. 337-364. doi : 10.1051/m2an/2018007. https://www.numdam.org/articles/10.1051/m2an/2018007/
[1] Handbook of Mathematical Functions With Formulas, Graphs, and Mathematical Tables. (1964). | Zbl
and ,[2] Sobolev Spaces. Academic Press (2003) Vol. 140. | MR | Zbl
and ,[3] Equivalent projectors for virtual element method. Comput. Math. Appl. 66 (2013) 376–391. | DOI | MR | Zbl
, , , and ,[4] Bubble stabilization of discontinuous Galerkin methods. Comput. Methods Appl. Mech. Eng. 198 (2009) 1651–1659. | DOI | MR | Zbl
, and ,[5] hp-version composite discontinuous Galerkin methods for elliptic problems on complicated domains. SIAM J. Sci. Comput. 35 (2013) A1417–A1439 | DOI | MR | Zbl
, and ,[6] A stream virtual element formulation of the Stokes problem on polygonal meshes. SIAM J. Numer. Anal. 52 (2014) 386–404. | DOI | MR | Zbl
, and ,[7] Multigrid algorithms for hp-discontinuous Galerkin discretizations of elliptic problems. SIAM J. Numer. Anal. 53 (2015) 598–618. | DOI | MR | Zbl
, and ,[8] A C1 virtual element method for the Cahn-Hilliard equation with polygonal meshes. SIAM J. Numer. Anal. 54 (2016) 34–56. | DOI | MR | Zbl
, , and ,[9] Discontinuous Galerkin approximation of flows in fractured porous media on polygonal and polyhedral meshes. MOX Report 55/2016 (2016).
, , and ,[10] Multigrid algorithms for high order discontinuous Galerkin methods. Lect. Notes Comput. Sci. Eng. 104 (2016) 3–13. | DOI | MR | Zbl
, and ,[11] On the virtual element method for topology optimization on polygonal meshes: a numerical study. Comput. Math. Appl. 74 (2017) 1091–1109. | DOI | MR | Zbl
, , and[12] Multigrid algorithms for hp-version interior penalty discontinuous Galerkin methods on polygonal and polyhedral meshes. Calcolo 54 (2017) 1169–1198. | DOI | MR | Zbl
, , , and ,[13] The fully nonconforming virtual element method for biharmonic problems. M3AS: Math. Models Methods Appl. Sci. 28 (2018) 387–407. | MR | Zbl
, and ,[14] The nonconforming virtual element method. ESAIM: M2AN 50 (2016) 879–904. | DOI | Numdam | MR | Zbl
, and ,[15] On the flexibility of agglomeration based physical space discontinuous Galerkin discretizations. J. Comput. Phys. 231 (2012) 45–65. | DOI | MR | Zbl
, , , and ,[16] Agglomeration-based physical frame DG discretizations: an attempt to be mesh free. M3AS: Math. Model. Methods Appl. Sci. 24 (2014) 1495–1539. | MR | Zbl
, , , and ,[17] Basic principles of virtual element methods. M3AS: Math. Model. Methods Appl. Sci. 23 (2013) 199–214. | MR | Zbl
, , , , and ,[18] Virtual elements for linear elasticity problems. SIAM J. Numer. Anal. 51 (2013) 794–812. | DOI | MR | Zbl
, and ,[19] The Hitchhiker’s guide to the virtual element method. M3AS: Math. Model. Methods Appl. Sci. 24 (2014) 1541–1573. | MR | Zbl
, , and ,[20] The Mimetic Finite Difference Method for Elliptic Problems. Vol. 11 of MS&A. Model. Simul. Appl. Springer, Cham (2014). | MR | Zbl
, and ,[21] A virtual element method for elastic and inelastic problems on polytope meshes. Comput. Methods Appl. Mech. Eng. 295 (2015) 327–346. | DOI | MR | Zbl
, and ,[22] Virtual element methods for parabolic problems on polygonal meshes. Numer. Methods Partial Differ. Equ. 31 (2015) 2110–2134. | DOI | MR | Zbl
and ,[23] Basic principles of hp virtual elements on quasiuniform meshes. M3AS: Math. Model. Methods Appl. Sci. 26 (2016) 1567–1598. | MR | Zbl
, , and ,[24] Virtual element method for general second order elliptic problems on polygonal meshes. M3AS: Math. Model. Methods Appl. Sci. 26 (2016) 729–750. | MR | Zbl
, , and ,[25] Mixed virtual element methods for general second order elliptic problems on polygonal meshes. ESAIM: M2AN 50 (2016) 727–747. | DOI | Numdam | MR | Zbl
, , and ,[26] H (div) and H(curl)-conforming virtual element methods. Numer. Math. 133 (2016) 303–332. | MR | Zbl
, , and ,[27] Serendipity nodal VEM spaces. Comput. Fluids 141 (2016) 2–12. | DOI | MR | Zbl
, , and ,[28] Exponential convergence of the hp virtual element method with corner singularity. Numer. Math. 138 (2018) 581–613. | DOI | MR | Zbl
, , and ,[29] The virtual element method for discrete fracture network simulations. Comput. Methods Appl. Mech. Eng. 280 (2014) 135–156. | DOI | MR | Zbl
, , and ,[30] Polynomial interpolation results in Sobolev spaces. J. Comput. Appl. Math. 43 (1992) 53–80. | DOI | MR | Zbl
and ,[31] BDDC and FETI-DP for the virtual element method. Calcolo 54 (2017) 1565–1593. | DOI | MR | Zbl
, and ,[32] Multigrid Methods. CRC Press (1993) Vol. 294. | MR | Zbl
,[33] The Mathematical Theory of Finite Element Methods, 3rd edn. Vol. 15 of Texts in Applied Mathematics. Springer-Verlag, New York (2008). | DOI | MR | Zbl
and ,[34] Virtual element methods for plate bending problems. Comput. Methods Appl. Mech. Eng. 253 (2013) 455–462. | DOI | MR | Zbl
and ,[35] Convergence of the mimetic finite difference method for diffusion problems on polyhedral meshes. SIAM J. Numer. Anal. 43 (2005) 1872–1896. | DOI | MR | Zbl
, and ,[36] Basic principles of mixed virtual element methods. ESAIM: M2AN 48 (2014) 1227–1240. | DOI | Numdam | MR | Zbl
, and ,[37] hp-version discontinuous Galerkin methods on polygonal and polyhedral meshes. M3AS: Math. Model. Methods Appl. Sci. 24 (2014) 2009–2041. | MR | Zbl
, and ,[38] hp-version discontinuous Galerkin methods for advection-diffusion-reaction problems on polytopic meshes. ESAIM: M2AN 50 (2016) 699–725. | DOI | Numdam | MR | Zbl
, , and ,[39] The nonconforming virtual element method for the Stokes equations. SIAM J. Numer. Anal. 54 (2016) 3411–3435. | DOI | MR | Zbl
, and ,[40] hp-version space-time discontinuous Galerkin methods for parabolic problems on prismatic meshes. SIAM J. Sci. Comput. 39 (2017) A1251–A1279. | DOI | MR | Zbl
, and[41] A posteriori error estimates for the virtual element method. Numer. Math. 137 (2017) 857–893. | DOI | MR | Zbl
, , and ,[42] A superconvergent LDG-hybridizable Galerkin method for second-order elliptic problems. Math. Comput. 77 (2008) 1887–1916. | DOI | MR | Zbl
, and ,[43] Bridging the hybrid high-order and hybridizable discontinuous Galerkin methods. ESAIM: M2AN 50 (2016) 635–650. | DOI | Numdam | MR | Zbl
, and ,[44] Exploring high-order three dimensional virtual elements: bases and stabilizations. Comput. Math Appl. 75 (2018) 3379–3401. | DOI | MR | Zbl
and ,[45] An arbitrary-order and compact-stencil discretization of diffusion on general meshes based on local reconstruction operators. Comput. Methods Appl. Math. 14 (2014) 461–472. | DOI | MR | Zbl
, and ,[46] Gradient schemes: a generic framework for the discretisation of linear, nonlinear and nonlocal elliptic and parabolic equations. M3AS: Math. Model. Methods Appl. Sci. 23 (2013) 2395–2432. | MR | Zbl
, , and ,[47] Partial Differential Equations. American Mathematical Society (2010). | MR | Zbl
,[48] Small-stencil 3D schemes for diffusive flows in porous media. ESAIM: M2AN 46 (2012) 265–290. | DOI | Numdam | MR | Zbl
, and ,[49] Virtual element method for the Laplace Beltrami equation on surfaces. To appear in: ESAIM: M2AN DOI: (2017). | DOI | Numdam | MR | Zbl
and ,[50] On the virtual element method for three-dimensional linear elasticity problems on arbitrary polyhedral meshes. Comput. Methods Appl. Mech. Eng. 282 (2014) 132–160. | DOI | MR | Zbl
, and ,[51] The numerical solution of diffusion problems in strongly heterogeneous non-isotropic materials. J. Comput. Phys. 132 (1997) 130–148. | DOI | MR | Zbl
, and ,[52] Mimetic finite difference method. J. Comput. Phys. 257 (2014) 1163–1227. | DOI | MR | Zbl
, and ,[53] Ill-conditioning in the virtual element method: stabilizations and bases. To appear in: Numer. Methods Partial Differ. Equ. DOI: (2017). | DOI | MR | Zbl
,[54] A virtual element method for the Steklov eigenvalue problem. M3AS: Math. Model. Methods Appl. Sci. 25 (2015) 1421–1445. | MR | Zbl
, and ,[55] A plane wave virtual element method for the Helmholtz problem. ESAIM: M2AN 50 (2016) 783–808. | DOI | Numdam | MR | Zbl
, and ,[56] Higher order BEM-based FEM on polygonal meshes. SIAM J. Numer. Anal. 50 (2012) 2357–2378. | DOI | MR | Zbl
and ,[57] p-and hp-Finite Element Methods: Theory and Applications in Solid and Fluid Mechanics. Clarendon Press, Oxford (1998). | MR | Zbl
,[58] Conforming polygonal finite elements. Int. J. Numer. Methods Eng. 61 (2014) 2045–2066. | DOI | MR | Zbl
and ,[59] Extended finite element method on polygonal and quadtree meshes. Comput. Methods Appl. Mech. Eng. 197 (2008) 425–438. | DOI | MR | Zbl
and ,[60] An Introduction to Sobolev Spaces and Interpolation Spaces. Springer Science & Business Media Vol. 3 (2007). | MR | Zbl
,[61] Interpolation Theory, Function Spaces, Differential Operators. North-Holland (1978). | MR | Zbl
,[62] The nonconforming virtual element method for plate bending problems. M3AS: Math. Model. Methods Appl. Sci. 26 (2016) 1671–1687. | MR | Zbl
, and ,- Nodal auxiliary space preconditioners for mixed virtual element methods, ESAIM: Mathematical Modelling and Numerical Analysis, Volume 59 (2025) no. 1, p. 363 | DOI:10.1051/m2an/2024081
- Reduced basis stabilization and post-processing for the virtual element method, Computer Methods in Applied Mechanics and Engineering, Volume 420 (2024), p. 116693 | DOI:10.1016/j.cma.2023.116693
- A stabilization-free Virtual Element Method based on divergence-free projections, Computer Methods in Applied Mechanics and Engineering, Volume 424 (2024), p. 116885 | DOI:10.1016/j.cma.2024.116885
- A deep learning algorithm to accelerate algebraic multigrid methods in finite element solvers of 3D elliptic PDEs, Computers Mathematics with Applications, Volume 167 (2024), p. 217 | DOI:10.1016/j.camwa.2024.05.013
- A mixed virtual element method for the two-dimensional Navier-Stokes equations in stream-function formulation, Computers Mathematics with Applications, Volume 175 (2024), p. 119 | DOI:10.1016/j.camwa.2024.09.020
- hp-Robust multigrid solver on locally refined meshes for FEM discretizations of symmetric elliptic PDEs, ESAIM: Mathematical Modelling and Numerical Analysis, Volume 58 (2024) no. 1, p. 247 | DOI:10.1051/m2an/2023104
- BDDC Preconditioners for Virtual Element Approximations of the Three-Dimensional Stokes Equations, SIAM Journal on Scientific Computing, Volume 46 (2024) no. 1, p. A156 | DOI:10.1137/23m1567679
- The role of stabilization in the virtual element method: A survey, Computers Mathematics with Applications, Volume 151 (2023), p. 244 | DOI:10.1016/j.camwa.2023.09.045
- Parallel block preconditioners for virtual element discretizations of the time-dependent Maxwell equations, Journal of Computational Physics, Volume 478 (2023), p. 111970 | DOI:10.1016/j.jcp.2023.111970
- Agglomeration-Based Geometric Multigrid Schemes for the Virtual Element Method, SIAM Journal on Numerical Analysis, Volume 61 (2023) no. 1, p. 223 | DOI:10.1137/21m1466864
- On Arbitrarily Regular Conforming Virtual Element Methods for Elliptic Partial Differential Equations, Spectral and High Order Methods for Partial Differential Equations ICOSAHOM 2020+1, Volume 137 (2023), p. 3 | DOI:10.1007/978-3-031-20432-6_1
- Adaptive virtual element methods with equilibrated fluxes, Applied Numerical Mathematics, Volume 173 (2022), p. 249 | DOI:10.1016/j.apnum.2021.11.015
- Robust and scalable adaptive BDDC preconditioners for virtual element discretizations of elliptic partial differential equations in mixed form, Computer Methods in Applied Mechanics and Engineering, Volume 391 (2022), p. 114620 | DOI:10.1016/j.cma.2022.114620
- Weakly imposed Dirichlet boundary conditions for 2D and 3D Virtual Elements, Computer Methods in Applied Mechanics and Engineering, Volume 400 (2022), p. 115454 | DOI:10.1016/j.cma.2022.115454
- Stabilization of the nonconforming virtual element method, Computers Mathematics with Applications, Volume 116 (2022), p. 25 | DOI:10.1016/j.camwa.2021.10.009
- An improved multigrid solver for the p-hierarchical basis finite element method using a space decomposition smoother, Computers Mathematics with Applications, Volume 124 (2022), p. 52 | DOI:10.1016/j.camwa.2022.08.019
- BDDC Preconditioners for Divergence Free Virtual Element Discretizations of the Stokes Equations, Journal of Scientific Computing, Volume 92 (2022) no. 2 | DOI:10.1007/s10915-022-01929-1
- VEM and the Mesh, The Virtual Element Method and its Applications, Volume 31 (2022), p. 1 | DOI:10.1007/978-3-030-95319-5_1
- A review on arbitrarily regular conforming virtual element methods for second- and higher-order elliptic partial differential equations, Mathematical Models and Methods in Applied Sciences, Volume 31 (2021) no. 14, p. 2825 | DOI:10.1142/s0218202521500627
- Parallel block preconditioners for three-dimensional virtual element discretizations of saddle-point problems, Computer Methods in Applied Mechanics and Engineering, Volume 372 (2020), p. 113424 | DOI:10.1016/j.cma.2020.113424
- A fully discrete virtual element scheme for the Cahn–Hilliard equation in mixed form, Computer Physics Communications, Volume 246 (2020), p. 106870 | DOI:10.1016/j.cpc.2019.106870
- Parallel solvers for virtual element discretizations of elliptic equations in mixed form, Computers Mathematics with Applications, Volume 79 (2020) no. 7, p. 1972 | DOI:10.1016/j.camwa.2019.07.027
- The conforming virtual element method for polyharmonic problems, Computers Mathematics with Applications, Volume 79 (2020) no. 7, p. 2021 | DOI:10.1016/j.camwa.2019.09.022
- A numerical study of the virtual element method in anisotropic diffusion problems, Mathematics and Computers in Simulation, Volume 177 (2020), p. 63 | DOI:10.1016/j.matcom.2020.04.006
- FETI-DP for the Three Dimensional Virtual Element Method, SIAM Journal on Numerical Analysis, Volume 58 (2020) no. 3, p. 1556 | DOI:10.1137/18m1233303
- The Virtual Element Method with curved edges, ESAIM: Mathematical Modelling and Numerical Analysis, Volume 53 (2019) no. 2, p. 375 | DOI:10.1051/m2an/2018052
- The harmonic virtual element method: stabilization and exponential convergence for the Laplace problem on polygonal domains, IMA Journal of Numerical Analysis, Volume 39 (2019) no. 4, p. 1787 | DOI:10.1093/imanum/dry038
- The Virtual Element Method on Anisotropic Polygonal Discretizations, Numerical Mathematics and Advanced Applications ENUMATH 2017, Volume 126 (2019), p. 725 | DOI:10.1007/978-3-319-96415-7_67
- A posteriori error estimation and adaptivity in hp virtual elements, Numerische Mathematik, Volume 143 (2019) no. 1, p. 139 | DOI:10.1007/s00211-019-01054-6
- Non-conforming Harmonic Virtual Element Method:
h - and p -Versions, Journal of Scientific Computing, Volume 77 (2018) no. 3, p. 1874 | DOI:10.1007/s10915-018-0797-4
Cité par 30 documents. Sources : Crossref