In this paper, we discuss the numerical approximation of a distributed optimal control problem governed by the von Kármán equations, defined in polygonal domains with point-wise control constraints. Conforming finite elements are employed to discretize the state and adjoint variables. The control is discretized using piece-wise constant approximations. A priori error estimates are derived for the state, adjoint and control variables. Numerical results that justify the theoretical results are presented.
Accepté le :
DOI : 10.1051/m2an/2018023
Mots clés : von Kármán equations, distributed control, plate bending, semilinear, conforming finite element methods, error estimates.
@article{M2AN_2018__52_3_1137_0, author = {Mallik, Gouranga and Nataraj, Neela and Raymond, Jean-Pierre}, title = {Error estimates for the numerical approximation of a distributed optimal control problem governed by the von {K\'arm\'an} equations}, journal = {ESAIM: Mathematical Modelling and Numerical Analysis }, pages = {1137--1172}, publisher = {EDP-Sciences}, volume = {52}, number = {3}, year = {2018}, doi = {10.1051/m2an/2018023}, zbl = {1405.65153}, mrnumber = {3865561}, language = {en}, url = {http://archive.numdam.org/articles/10.1051/m2an/2018023/} }
TY - JOUR AU - Mallik, Gouranga AU - Nataraj, Neela AU - Raymond, Jean-Pierre TI - Error estimates for the numerical approximation of a distributed optimal control problem governed by the von Kármán equations JO - ESAIM: Mathematical Modelling and Numerical Analysis PY - 2018 SP - 1137 EP - 1172 VL - 52 IS - 3 PB - EDP-Sciences UR - http://archive.numdam.org/articles/10.1051/m2an/2018023/ DO - 10.1051/m2an/2018023 LA - en ID - M2AN_2018__52_3_1137_0 ER -
%0 Journal Article %A Mallik, Gouranga %A Nataraj, Neela %A Raymond, Jean-Pierre %T Error estimates for the numerical approximation of a distributed optimal control problem governed by the von Kármán equations %J ESAIM: Mathematical Modelling and Numerical Analysis %D 2018 %P 1137-1172 %V 52 %N 3 %I EDP-Sciences %U http://archive.numdam.org/articles/10.1051/m2an/2018023/ %R 10.1051/m2an/2018023 %G en %F M2AN_2018__52_3_1137_0
Mallik, Gouranga; Nataraj, Neela; Raymond, Jean-Pierre. Error estimates for the numerical approximation of a distributed optimal control problem governed by the von Kármán equations. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 52 (2018) no. 3, pp. 1137-1172. doi : 10.1051/m2an/2018023. http://archive.numdam.org/articles/10.1051/m2an/2018023/
[1] On von Kármán equations and the buckling of a thin elastic plate: I. The clamped plate. Commun. Pure Appl. Math. 20 (1967) 687–719. | DOI | MR | Zbl
,[2] On von Kármán equations and the buckling of a thin elastic plate. Bull. Am. Math. Soc. 72 (1966) 1006–1011. | DOI | MR | Zbl
and ,[3] Von Kármán equations and the buckling of a thin elastic plate. II. Plate with general edge conditions. Commun. Pure Appl. Math. 21 (1968) 227–241. | DOI | MR | Zbl
and ,[4] On the boundary value problem of the biharmonic operator on domains with angular corners. Math. Methods Appl. Sci. 2 (1980) 556–581. | DOI | MR | Zbl
and ,[5] The Mathematical Theory of Finite Element Methods, 3rd edition. Springer (2007). | MR | Zbl
and ,[6] A C0 interior penalty method for a von Kármán plate. Numer. Math. 135 (2017) 803–832. | DOI | MR | Zbl
, , , and ,[7] Finite element approximations of the von Kármán equations. RAIRO Anal. Numér. 12 (1978) 303–312. | DOI | Numdam | MR | Zbl
,[8] Error estimates for the discretization of the velocity tracking problem. Numer. Math. 130 (2015) 615–643. | DOI | MR | Zbl
and ,[9] Second order analysis for optimal control problems: improving results expected from abstract theory. SIAM J. Optim. 22 (2012) 261–279. | DOI | MR | Zbl
and ,[10] Error estimates for the numerical approximation of a distributed control problem for the steady-state Navier-Stokes equations. SIAM J. Control Optim. 46 (2007) 952–982 | DOI | MR | Zbl
, , and ,[11] The Finite Element Method for Elliptic Problems. North-, Amsterdam (1978). | MR | Zbl
,[12] Mathematical Elasticity: Theory of Plates, Vol. II. North-Holland, Amsterdam (1997). | MR | Zbl
,[13] Error estimates for optimal control problems of a class of quasilinear equations arising in variable viscosity fluid flow. Numer. Math. 132 (2016) 691–720. | DOI | MR | Zbl
and ,[14] Partial Differential Equations, Vol. 19. American Mathematical Society (1998). | MR | Zbl
,[15] A priori error estimates for the finite element discretization of optimal distributed control problems governed by the biharmonic operator. Calcolo 50 (2013) 165–193. | DOI | MR | Zbl
, and ,[16] Singularities in Boundary Value Problems, Vol. 22 of Research Notes in Applied Mathematics. Springer-Verlag (1992). | MR | Zbl
,[17] An interior penalty method for distributed optimal control problems governed by the biharmonic operator. Comput. Math. Appl. 68 (2014) 2205–2221. | DOI | MR | Zbl
, , and ,[18] Finite-dimensional approximation of a class of constrained nonlinear optimal control problems. SIAM J. Control Optim. 34 (1996) 1001–1043. | DOI | MR | Zbl
and ,[19] Analysis and finite element approximation of optimal control problems for the stationary Navier-Stokes equations with Dirichlet controls. RAIRO Modél. Math. Anal. Numér. 25 (1991) 711–748. | DOI | Numdam | MR | Zbl
, , and ,[20] Analysis and finite element approximation of optimal control problems for the stationary Navier-Stokes equations with distributed and Neumann controls. Math. Comput. 57 (1991) 123–151. | DOI | MR | Zbl
, , and ,[21] Finite element approximation of optimal control problems for the von Kármán equations. Numer. Methods Partial Differ. Equ. 11 (1995) 111–125. | DOI | MR | Zbl
and ,[22] An existence theorem for the von Kármán equations. Arch. Ration. Mech. Anal. 27 (1967) 233–242. | DOI | MR | Zbl
,[23] Optimal Control of Systems Governed by Partial Differential Equations. Springer, Berlin (1971). | DOI | MR | Zbl
,[24] Conforming finite element methods for the von Kármán equations. Adv. Comput. Math. 42 (2016) 1031–1054. | DOI | MR | Zbl
and ,[25] A nonconforming finite element approximation for the von Kármán equations. ESAIM: M2AN 50 (2016) 433–454. | DOI | Numdam | MR | Zbl
and ,[26] Superconvergence properties of optimal control problems. SIAM J. Control Optim. 43 (2004) 970–985. | DOI | MR | Zbl
and ,[27] A mixed finite element method for the solution of the von Kármán equations. Numer. Math. 26 (1976) 255–269. | DOI | MR | Zbl
,[28] Hybrid finite element methods for the von Kármán equations. Calcolo 16 (1979) 271–288. | DOI | MR | Zbl
,[29] On the numerical analysis of the von Kármán equations: mixed finite element approximation and continuation techniques. Numer. Math. 39 (1982) 371–404. | DOI | MR | Zbl
,[30] Optimal Control of Partial Differential Equations: Theory, Methods and Applications. Translated from the 2005 German original by Jürgen Sprekels. Vol. 112 of Graduate Studies in Mathematics. American Mathematical Society, Providence, RI (2010). | DOI | MR | Zbl
,Cité par Sources :