In this paper, we are interested in finding the optimal shape of a magnet. The criterion to maximize is the jump of the electromagnetic field between two different configurations. We prove existence of an optimal shape into a natural class of domains. We introduce a quasi-Newton type algorithm which moves the boundary. This method is very efficient to improve an initial shape. We give some numerical results.
Mots-clés : shape optimization, optimum design, magnet, numerical examples
@article{M2AN_2002__36_2_223_0, author = {Henrot, Antoine and Villemin, Gr\'egory}, title = {An optimum design problem in magnetostatics}, journal = {ESAIM: Mod\'elisation math\'ematique et analyse num\'erique}, pages = {223--239}, publisher = {EDP-Sciences}, volume = {36}, number = {2}, year = {2002}, doi = {10.1051/m2an:2002012}, mrnumber = {1906816}, zbl = {1054.49030}, language = {en}, url = {http://archive.numdam.org/articles/10.1051/m2an:2002012/} }
TY - JOUR AU - Henrot, Antoine AU - Villemin, Grégory TI - An optimum design problem in magnetostatics JO - ESAIM: Modélisation mathématique et analyse numérique PY - 2002 SP - 223 EP - 239 VL - 36 IS - 2 PB - EDP-Sciences UR - http://archive.numdam.org/articles/10.1051/m2an:2002012/ DO - 10.1051/m2an:2002012 LA - en ID - M2AN_2002__36_2_223_0 ER -
%0 Journal Article %A Henrot, Antoine %A Villemin, Grégory %T An optimum design problem in magnetostatics %J ESAIM: Modélisation mathématique et analyse numérique %D 2002 %P 223-239 %V 36 %N 2 %I EDP-Sciences %U http://archive.numdam.org/articles/10.1051/m2an:2002012/ %R 10.1051/m2an:2002012 %G en %F M2AN_2002__36_2_223_0
Henrot, Antoine; Villemin, Grégory. An optimum design problem in magnetostatics. ESAIM: Modélisation mathématique et analyse numérique, Tome 36 (2002) no. 2, pp. 223-239. doi : 10.1051/m2an:2002012. http://archive.numdam.org/articles/10.1051/m2an:2002012/
[1] Lectures on Elliptic Boundary Value Problems. Van Nostrand Math Studies (1965). | MR | Zbl
,[2] Analyse Numérique. Hermann, Paris (1991). | Zbl
,[3] On the existence of a solution in a domain identification problem. J. Math. Anal. Appl. 52 (1975) 189-289. | Zbl
,[4] Sur une famille de variétés à bord lipschitziennes, application à un problème d'identification de domaine. Ann. Inst. Fourier (Grenoble) 4 (1977) 201-231. | Numdam | Zbl
,[5] Analyse mathématique et calcul numérique, Vol. I and II. Masson, Paris (1984).
and (Eds.),[6] Numerical Methods for unconstrained optimization. Prentice Hall (1983). | Zbl
and ,[7] Magnétostatique. Masson, Paris (1968). | Zbl
,[8] Optimisation de forme (to appear).
and ,[9] Computation of free sufaces in the electromagnetic shaping of liquid metals by optimization algorithms. Eur. J. Mech. B Fluids 10 (1991) 489-500. | Zbl
and ,[10] Numerical simulation of tridimensional electromagnetic shaping of liquid metals. Numer. Math. 65 (1993) 203-217. | Zbl
and ,[11] Optimal shape design for elliptic systems. Springer Series in Computational Physics. Springer, New York (1984). | MR | Zbl
,[12] Differentiation with respect to the domain in boundary value problems. Numer. Funct. Anal. Optim. 2 (1980) 649-687. | Zbl
,[13] Variations with respect to domain for Neumann condition. Proceedings of the 1986 IFAC Congress at Pasadena “Control of Distributed Parameter Systems”.
,[14] Introduction to shape optimization: shape sensitity analysis. Springer Series in Computational Mathematics, Vol. 10, Springer, Berlin (1992). | MR | Zbl
and ,Cité par Sources :