In this article, we show the convergence of a class of numerical schemes for certain maximal monotone evolution systems; a by-product of this results is the existence of solutions in cases which had not been previously treated. The order of these schemes is in general and when the only non Lipschitz continuous term is the subdifferential of the indicatrix of a closed convex set. In the case of Prandtl’s rheological model, our estimates in maximum norm do not depend on spatial dimension.
Mots-clés : differential inclusions, existence and uniqueness, multivalued maximal monotone operator, sub-differential, numerical analysis, implicit Euler numerical scheme, frictions laws
@article{M2AN_2002__36_3_427_0, author = {Bastien, J\'er\^ome and Schatzman, Michelle}, title = {Numerical precision for differential inclusions with uniqueness}, journal = {ESAIM: Mod\'elisation math\'ematique et analyse num\'erique}, pages = {427--460}, publisher = {EDP-Sciences}, volume = {36}, number = {3}, year = {2002}, doi = {10.1051/m2an:2002020}, mrnumber = {1918939}, zbl = {1036.34012}, language = {en}, url = {http://archive.numdam.org/articles/10.1051/m2an:2002020/} }
TY - JOUR AU - Bastien, Jérôme AU - Schatzman, Michelle TI - Numerical precision for differential inclusions with uniqueness JO - ESAIM: Modélisation mathématique et analyse numérique PY - 2002 SP - 427 EP - 460 VL - 36 IS - 3 PB - EDP-Sciences UR - http://archive.numdam.org/articles/10.1051/m2an:2002020/ DO - 10.1051/m2an:2002020 LA - en ID - M2AN_2002__36_3_427_0 ER -
%0 Journal Article %A Bastien, Jérôme %A Schatzman, Michelle %T Numerical precision for differential inclusions with uniqueness %J ESAIM: Modélisation mathématique et analyse numérique %D 2002 %P 427-460 %V 36 %N 3 %I EDP-Sciences %U http://archive.numdam.org/articles/10.1051/m2an:2002020/ %R 10.1051/m2an:2002020 %G en %F M2AN_2002__36_3_427_0
Bastien, Jérôme; Schatzman, Michelle. Numerical precision for differential inclusions with uniqueness. ESAIM: Modélisation mathématique et analyse numérique, Tome 36 (2002) no. 3, pp. 427-460. doi : 10.1051/m2an:2002020. http://archive.numdam.org/articles/10.1051/m2an:2002020/
[1] Study of some rheological models with a finite number of degrees of freedom. Eur. J. Mech. A Solids 19 (2000) 277-307. | Zbl
, and ,[2] Study of an elastoplastic model with an infinite number of internal degrees of freedom. Eur. J. Mech. A Solids 21 (2002) 199-222. | Zbl
, and ,[3] Étude théorique et numérique d'inclusions différentielles maximales monotones. Applications à des modèles élastoplastiques. Ph.D. Thesis, Université Lyon I (2000). number: 96-2000.
,[4] Perturbations non linéaires d'opérateurs maximaux monotones. C. R. Acad. Sci. Paris Sér. A-B 269 (1969) 566-569. | Zbl
,[5] Problèmes unilatéraux. J. Math. Pures Appl. 51 (1972) 1-168. | Zbl
,[6] Opérateurs maximaux monotones et semi-groupes de contractions dans les espaces de Hilbert. North-Holland Publishing Co., Amsterdam (1973). North-Holland Mathematics Studies, No. 5. Notas de Matemática (50). | MR | Zbl
,[7] On the relation of the operator to evolution governed by accretive operators. Israel J. Math. 21 (1975) 261-278. | Zbl
and ,[8] Analyse mathématique et calcul numérique pour les sciences et les techniques. Vol. 8. Masson, Paris (1988). Évolution: semi-groupe, variationnel., Reprint of the edition of 1985. | MR | Zbl
and ,[9] Error estimates for discretized differential inclusion. Computing 41 (1989) 349-358. | Zbl
and ,[10] Difference methods for differential inclusions: a survey. SIAM Rev. 34 (1992) 263-294. | Zbl
and ,[11] A random walk for the solution sought: remark on the difference scheme approach to nonlinear semigroups and evolution operators. Semigroup Forum 36 (1987) 117-126. | Zbl
,[12] ADI-methods for nonlinear variational inequalities of evolution. Iterative solution of nonlinear systems of equations. Lecture Notes in Math. 953, Springer, Berlin-New York (1982) 138-148. | Zbl
,[13] The existence of a method of lines for evolution equations involving maximal monotone operators and locally defined perturbations. Panamer. Math. J. 1 (1991) 17-27. | Zbl
,[14] Discrete approximations of differential inclusions. Bayreuth. Math. Schr. 54 (1998) 149-232. | Zbl
and ,[15] Problèmes aux limites non homogènes et applications. Vol. 1. Dunod, Paris (1968). | MR | Zbl
and ,[16] Error estimates for the implicit Euler approximation of an evolution inequality. Nonlinear Anal. 15 (1990) 1077-1089. | Zbl
,[17] Second-order discrete approximation to linear differential inclusions. SIAM J. Numer. Anal. 29 (1992) 439-451. | Zbl
,[18] Nonlinear functional analysis and its applications. II/B. Springer-Verlag, New York (1990). Nonlinear monotone operators, Translated from german by the author and Leo F. Boron. | MR | Zbl
,Cité par Sources :