Let be a function on a real Hilbert space and the manifold defined by Graph . We study the motion of a material point with unit mass, subjected to stay on and which moves under the action of the gravity force (characterized by ), the reaction force and the friction force ( is the friction parameter). For any initial conditions at time , we prove the existence of a trajectory defined on . We are then interested in the asymptotic behaviour of the trajectories when . More precisely, we prove the weak convergence of the trajectories when is convex. When admits a strong minimum, we show moreover that the mechanical energy exponentially decreases to its minimum.
Mots-clés : mechanics of particles, dissipative dynamical system, optimization, convex minimization, asymptotic behaviour, gradient system, heavy ball with friction
@article{M2AN_2002__36_3_505_0, author = {Cabot, Alexandre}, title = {Motion with friction of a heavy particle on a manifold. {Applications} to optimization}, journal = {ESAIM: Mod\'elisation math\'ematique et analyse num\'erique}, pages = {505--516}, publisher = {EDP-Sciences}, volume = {36}, number = {3}, year = {2002}, doi = {10.1051/m2an:2002023}, mrnumber = {1918942}, zbl = {1032.34059}, language = {en}, url = {http://archive.numdam.org/articles/10.1051/m2an:2002023/} }
TY - JOUR AU - Cabot, Alexandre TI - Motion with friction of a heavy particle on a manifold. Applications to optimization JO - ESAIM: Modélisation mathématique et analyse numérique PY - 2002 SP - 505 EP - 516 VL - 36 IS - 3 PB - EDP-Sciences UR - http://archive.numdam.org/articles/10.1051/m2an:2002023/ DO - 10.1051/m2an:2002023 LA - en ID - M2AN_2002__36_3_505_0 ER -
%0 Journal Article %A Cabot, Alexandre %T Motion with friction of a heavy particle on a manifold. Applications to optimization %J ESAIM: Modélisation mathématique et analyse numérique %D 2002 %P 505-516 %V 36 %N 3 %I EDP-Sciences %U http://archive.numdam.org/articles/10.1051/m2an:2002023/ %R 10.1051/m2an:2002023 %G en %F M2AN_2002__36_3_505_0
Cabot, Alexandre. Motion with friction of a heavy particle on a manifold. Applications to optimization. ESAIM: Modélisation mathématique et analyse numérique, Tome 36 (2002) no. 3, pp. 505-516. doi : 10.1051/m2an:2002023. http://archive.numdam.org/articles/10.1051/m2an:2002023/
[1] On the minimizing property of a second order dissipative system in Hilbert space. SIAM J. Control Optim. 38 (2000) 1102-1119. | Zbl
,[2] The heavy ball with friction method. I The continuous dynamical system. Commun. Contemp. Math. 2 (2000) 1-34. | Zbl
, and ,[3] Exponential decay of the energy for a second-order in time dynamical system. Working paper, Département de Mathématiques, Université Montpellier II.
,[4] Asymptotic convergence of nonlinear contraction semigroups in Hilbert space. J. Funct. Anal. 18 (1975) 15-26. | Zbl
,[5] Asymptotic behavior of dissipative systems. Mathematical Surveys and Monographs, 25. American Mathematical Society, Providence, RI (1988). | MR | Zbl
,[6] Systèmes dynamiques dissipatifs et applications. RMA 17, Masson, Paris (1991). | MR | Zbl
,[7] Weak convergence of the sequence of successive approximations for nonexpansive mappings. Bull. Amer. Math. Soc. 73 (1967) 591-597. | Zbl
,Cité par Sources :