We consider a dynamical one-dimensional nonlinear von Kármán model for beams depending on a parameter and study its asymptotic behavior for large, as . Introducing appropriate damping mechanisms we show that the energy of solutions of the corresponding damped models decay exponentially uniformly with respect to the parameter . In order for this to be true the damping mechanism has to have the appropriate scale with respect to . In the limit as we obtain damped Berger-Timoshenko beam models for which the energy tends to zero exponentially as well. This is done both in the case of internal and boundary damping. We address the same problem for plates with internal damping.
Mots-clés : uniform stabilization, singular limit, von kármán system, beams, plates
@article{M2AN_2002__36_4_657_0, author = {Menzala, G. Perla and Pazoto, Ademir F. and Zuazua, Enrique}, title = {Stabilization of {Berger-Timoshenko's} equation as limit of the uniform stabilization of the von {K\'arm\'an} system of beams and plates}, journal = {ESAIM: Mod\'elisation math\'ematique et analyse num\'erique}, pages = {657--691}, publisher = {EDP-Sciences}, volume = {36}, number = {4}, year = {2002}, doi = {10.1051/m2an:2002029}, zbl = {1073.35040}, language = {en}, url = {http://archive.numdam.org/articles/10.1051/m2an:2002029/} }
TY - JOUR AU - Menzala, G. Perla AU - Pazoto, Ademir F. AU - Zuazua, Enrique TI - Stabilization of Berger-Timoshenko's equation as limit of the uniform stabilization of the von Kármán system of beams and plates JO - ESAIM: Modélisation mathématique et analyse numérique PY - 2002 SP - 657 EP - 691 VL - 36 IS - 4 PB - EDP-Sciences UR - http://archive.numdam.org/articles/10.1051/m2an:2002029/ DO - 10.1051/m2an:2002029 LA - en ID - M2AN_2002__36_4_657_0 ER -
%0 Journal Article %A Menzala, G. Perla %A Pazoto, Ademir F. %A Zuazua, Enrique %T Stabilization of Berger-Timoshenko's equation as limit of the uniform stabilization of the von Kármán system of beams and plates %J ESAIM: Modélisation mathématique et analyse numérique %D 2002 %P 657-691 %V 36 %N 4 %I EDP-Sciences %U http://archive.numdam.org/articles/10.1051/m2an:2002029/ %R 10.1051/m2an:2002029 %G en %F M2AN_2002__36_4_657_0
Menzala, G. Perla; Pazoto, Ademir F.; Zuazua, Enrique. Stabilization of Berger-Timoshenko's equation as limit of the uniform stabilization of the von Kármán system of beams and plates. ESAIM: Modélisation mathématique et analyse numérique, Tome 36 (2002) no. 4, pp. 657-691. doi : 10.1051/m2an:2002029. http://archive.numdam.org/articles/10.1051/m2an:2002029/
[1] Initial-boundary value problems for an extensible beam. J. Math. Anal. Appl. 41 (1973) 69-90. | Zbl
,[2] Mathematical elasticity, Vol. II. Theory of plates. Stud. Math. Appl. 27 (1997). | MR | Zbl
,[3] Asymptotic theory and analysis for displacements and stress distribution in nonlinear elastic straight slender rods. J. Elasticity 19 (1988) 111-161. | Zbl
, , , and ,[4] Free vibrations and dynamic buckling of the extensible beam. J. Math. Anal. Appl. 29 (1970) 443-454. | Zbl
,[5] Decay estimates for some damped hyperbolic equations. Arch. Rational Mech. Anal. 100 (1998) 191-206. | Zbl
and ,[6] Hardy's and Korn's type inequalities and their applications. Rendiconti di Matematica VII (1990) 641-666. | Zbl
and ,[7] A direct method for the boundary stabilization of the wave equation. J. Math. Pures Appl. (9) 69 (1990) 33-55. | Zbl
and ,[8] Boundary stabilization of thin plates. SIAM Stud. Appl. Math., Philadelphia (1989). | MR | Zbl
,[9] Recent progress in exact boundary controllability and uniform stability of thin beams and plates. Lect. Notes in Pure and Appl. Math. 128, Dekker, New York (1991) 61-111. | Zbl
,[10] Weak, classical and intermediate solutions to full von Kármán system of dynamic nonlinear elasticity. Appl. Anal. 68 (1998) 121-145. | Zbl
,[11] Uniform stabilization of a nonlinear beam by nonlinear boundary feedback. J. Differential Equations 91 (1991) 355-388. | Zbl
and ,[12] Perturbations singulières dans les problèmes aux limites et contrôle optimal. Springer-Verlag, Berlin, in Lectures Notes in Math. 323 (1973). | MR | Zbl
,[13] Nonlinear oscillations. Wiley-Interscience, New York (1989). | MR | Zbl
and ,[14] Uniform stabilization of a nonlinear beam model with thermal effects and nonlinear boundary dissipation. Funkcial. Ekvac. 43 (2000) 339-360. | Zbl
and ,[15] Boundary stabilization for the von Karman equations. SIAM J. Control Optim. 33 (1995) 255-273 | Zbl
and ,[16] Global existence of the full von Kármán system. Appl. Math. Optim. 34 (1996) 139-160. | Zbl
and ,[17] The beam equation as a limit of nonlinear von Kármán model. Appl. Math. Lett. 12 (1999) 47-52. | Zbl
and ,[18] Timoshenko's beam equation as limit of a nonlinear one-dimensional von Kármán system. Proc. Roy. Soc. Edinburg Sect. A 130 (2000) 855-875. | Zbl
and ,[19] Timoshenko's plate equation as a singular limit of the dynamical von Kármán system. J. Math. Pures Appl. (9) 79 (2000) 73-94. | Zbl
and ,[20] On the uniqueness theorem for generalized solutions of initial-boundary problems for the Marguerre-Vlasov vibrations of shallow shells with clamped boundary conditions. Appl. Math. Optim. 39 (1999) 309-326. | Zbl
,[21] Compact sets in the space . Ann. Mat. Pura Appl. (4) CXLVI (1987) 65-96. | Zbl
,[22] Mathematical modelling of rods. Handbook of numerical analysis, Vol. IV, North Holland, Amsterdam (1996) 487-974. | Zbl
and ,[23] Stability and decay for a class of nonlinear hyperbolic problems. Asymptot. Anal. 1 (1988) 1-28. | Zbl
,Cité par Sources :