Convergence of a numerical scheme for a nonlinear oblique derivative boundary value problem
ESAIM: Modélisation mathématique et analyse numérique, Tome 36 (2002) no. 6, pp. 1111-1132.

We present here a discretization of a nonlinear oblique derivative boundary value problem for the heat equation in dimension two. This finite difference scheme takes advantages of the structure of the boundary condition, which can be reinterpreted as a Burgers equation in the space variables. This enables to obtain an energy estimate and to prove the convergence of the scheme. We also provide some numerical simulations of this problem and a numerical study of the stability of the scheme, which appears to be in good agreement with the theory.

DOI : 10.1051/m2an:2003008
Classification : 35K60, 65N12
Mots-clés : oblique derivative boundary problem, finite difference scheme, heat equation, Burgers equation
@article{M2AN_2002__36_6_1111_0,
     author = {Mehats, Florian},
     title = {Convergence of a numerical scheme for a nonlinear oblique derivative boundary value problem},
     journal = {ESAIM: Mod\'elisation math\'ematique et analyse num\'erique},
     pages = {1111--1132},
     publisher = {EDP-Sciences},
     volume = {36},
     number = {6},
     year = {2002},
     doi = {10.1051/m2an:2003008},
     mrnumber = {1958661},
     zbl = {1060.65100},
     language = {en},
     url = {http://archive.numdam.org/articles/10.1051/m2an:2003008/}
}
TY  - JOUR
AU  - Mehats, Florian
TI  - Convergence of a numerical scheme for a nonlinear oblique derivative boundary value problem
JO  - ESAIM: Modélisation mathématique et analyse numérique
PY  - 2002
SP  - 1111
EP  - 1132
VL  - 36
IS  - 6
PB  - EDP-Sciences
UR  - http://archive.numdam.org/articles/10.1051/m2an:2003008/
DO  - 10.1051/m2an:2003008
LA  - en
ID  - M2AN_2002__36_6_1111_0
ER  - 
%0 Journal Article
%A Mehats, Florian
%T Convergence of a numerical scheme for a nonlinear oblique derivative boundary value problem
%J ESAIM: Modélisation mathématique et analyse numérique
%D 2002
%P 1111-1132
%V 36
%N 6
%I EDP-Sciences
%U http://archive.numdam.org/articles/10.1051/m2an:2003008/
%R 10.1051/m2an:2003008
%G en
%F M2AN_2002__36_6_1111_0
Mehats, Florian. Convergence of a numerical scheme for a nonlinear oblique derivative boundary value problem. ESAIM: Modélisation mathématique et analyse numérique, Tome 36 (2002) no. 6, pp. 1111-1132. doi : 10.1051/m2an:2003008. http://archive.numdam.org/articles/10.1051/m2an:2003008/

[1] L. Caffarelli and J.-M. Roquejoffre, A nonlinear oblique derivative boundary value problem for the heat equation: analogy with the porous medium equation. Ann. Inst. H. Poincaré Anal. Non Linéaire 19 (2002) 41-80. | Numdam | Zbl

[2] G. Dong, Initial and nonlinear oblique boundary value problems for fully nonlinear parabolic equations. J. Partial Differential Equations Ser. A 1 (1988) 12-42. | Zbl

[3] E. Godlewski and P.-A. Raviart, Hyperbolic systems of conservation laws. Mathématiques & Applications, Ellipse, Paris (1991). | MR | Zbl

[4] B. Larrouturou, Modélisation mathématique et numérique pour les sciences de l'ingénieur. Cours de l'École polytechnique, Département de Mathématiques Appliquées, 1996.

[5] R.J. Leveque, Numerical Methods for Conservation Laws. Lectures in Mathematics, Birkhäuser Verlag (1990). | MR | Zbl

[6] J.-L. Lions, Quelques méthodes de résolution des problèmes aux limites non linéaires. Études Mathématiques, Dunod, Gauthier-Villars (1969). | MR | Zbl

[7] J.-L. Lions and E. Magenes, Problèmes aux limites non homogènes et applications. Vol. 1, Travaux et recherches Mathématiques, Dunod (1968). | MR | Zbl

[8] F. Méhats, Étude de problèmes aux limites en physique du transport des particules chargées. Thèse de doctorat (1997).

[9] F. Méhats and J.-M. Roquejoffre, A nonlinear oblique derivative boundary value problem for the heat equation, Part 1 and Part 2. Ann. Inst. H. Poincaré Anal. Non Linéaire 16 (1999) 221-253 and 691-724. | Numdam | Zbl

[10] A.I. Nazarov and N.N. Ural'Tseva, A Problem with an Oblique Derivative for a Quasilinear Parabolic Equation. J. Math. Sci. 77 (1995) 3212-3220. | Zbl

Cité par Sources :