The limit behavior of the solutions of Signorini’s type-like problems in periodically perforated domains with period is studied. The main feature of this limit behaviour is the existence of a critical size of the perforations that separates different emerging phenomena as . In the critical case, it is shown that Signorini’s problem converges to a problem associated to a new operator which is the sum of a standard homogenized operator and an extra zero order term (“strange term”) coming from the geometry; its appearance is due to the special size of the holes. The limit problem captures the two sources of oscillations involved in this kind of free boundary-value problems, namely, those arising from the size of the holes and those due to the periodic inhomogeneity of the medium. The main ingredient of the method used in the proof is an explicit construction of suitable test functions which provide a good understanding of the interactions between the above mentioned sources of oscillations.
Mots clés : Signorini's problem, homogenization, Tartar's method, variational inequality
@article{M2AN_2003__37_5_773_0, author = {Conca, Carlos and Murat, Fran\c{c}ois and Timofte, Claudia}, title = {A generalized strange term in {Signorini's} type problems}, journal = {ESAIM: Mod\'elisation math\'ematique et analyse num\'erique}, pages = {773--805}, publisher = {EDP-Sciences}, volume = {37}, number = {5}, year = {2003}, doi = {10.1051/m2an:2003055}, zbl = {1040.35008}, language = {en}, url = {http://archive.numdam.org/articles/10.1051/m2an:2003055/} }
TY - JOUR AU - Conca, Carlos AU - Murat, François AU - Timofte, Claudia TI - A generalized strange term in Signorini's type problems JO - ESAIM: Modélisation mathématique et analyse numérique PY - 2003 SP - 773 EP - 805 VL - 37 IS - 5 PB - EDP-Sciences UR - http://archive.numdam.org/articles/10.1051/m2an:2003055/ DO - 10.1051/m2an:2003055 LA - en ID - M2AN_2003__37_5_773_0 ER -
%0 Journal Article %A Conca, Carlos %A Murat, François %A Timofte, Claudia %T A generalized strange term in Signorini's type problems %J ESAIM: Modélisation mathématique et analyse numérique %D 2003 %P 773-805 %V 37 %N 5 %I EDP-Sciences %U http://archive.numdam.org/articles/10.1051/m2an:2003055/ %R 10.1051/m2an:2003055 %G en %F M2AN_2003__37_5_773_0
Conca, Carlos; Murat, François; Timofte, Claudia. A generalized strange term in Signorini's type problems. ESAIM: Modélisation mathématique et analyse numérique, Tome 37 (2003) no. 5, pp. 773-805. doi : 10.1051/m2an:2003055. http://archive.numdam.org/articles/10.1051/m2an:2003055/
[1] Asymptotic analysis of periodically perforated non-linear media. J. Math. Pures Appl. 81 (2002) 439-451. | Zbl
and ,[2] Variational Convergence for Functions and Operators. Pitman, London (1984). | MR | Zbl
,[3] Homogenization of Multiple Integrals. Oxford University Press, Oxford (1998). | MR | Zbl
and ,[4] Problèmes unilatéraux. J. Math. Pures Appl. 51 (1972) 1-168. | Zbl
,[5] The limit of Dirichlet systems for variable monotone operators in general perforated domains. J. Math. Pures Appl. 81 (2002) 471-493. | Zbl
and ,[6] Existence of a sequence satisfying Cioranescu-Murat conditions in homogenization of Dirichlet problems in perforated domains. Rend. Mat. Appl. 16 (1996) 387-413. | Zbl
,[7] Homogenization of Dirichlet problems for monotone operators in varying domains. Proc. Roy. Soc. Edinburgh Sect. A 127 (1997) 457-478. | Zbl
,[8] Homogenization in open sets with holes. J. Math. Anal. Appl. 71 (1979) 590-607. | Zbl
and ,[9] Un terme étrange venu d'ailleurs, I and II, in Nonlinear Differential Equations and Their Applications, Collège de France Seminar, H. Brézis and J.L. Lions, Eds., Vol. II, pp. 98-138, Vol. III, pp. 154-178. Pitman, London, Research Notes in Mathematics 60 and 70 (1982 and 1983). English translation: A Strange Term Coming from Nowhere, in Topics in the Mathematical Modelling of Composite Materials, A. Cherkaev and R.V. Kohn, Eds. Birkhäuser, Boston, Progr. Nonlinear Differential Equations Appl. 31 (1997) 45-93. | Zbl
and ,[10] Non homogeneous Neumann problems in domains with small holes. RAIRO Modél. Math. Anal. Numér. 22 (1988) 561-607. | Numdam | Zbl
and ,[11] On uniform -estimates in periodic homogenization. Proc. Roy. Soc. Edinburgh A 131 (2001) 499-517. | Zbl
and ,[12] On the integral representation of certain local functionals. Ricerche Mat. 32 (1983) 85-113. | Zbl
,[13] -convergence and -capacities. Ann. Scuola Norm. Sup. Pisa Cl. Sci. 14 (1987) 423-464. | Numdam | Zbl
,[14] An Introduction to Convergence. Birkhäuser, Boston, Progr. Nonlinear Differential Equations Appl. 8 (1993). | Zbl
,[15] New results on the asymptotic behavior of Dirichlet problems in perforated domains. Math. Models Methods Appl. Sci. 4 (1994) 373-407. | Zbl
and ,[16] Asymptotic behaviour and correctors for Dirichlet problems in perforated domains with homogeneous monotone operators. Ann. Scuola. Norm. Sup. Pisa Cl. Sci. 24 (1997) 239-290. | Numdam | Zbl
and ,[17] Asymptotic behaviour and correctors for linear Dirichlet problems with simultaneously varying operators and domains. Ann. Inst. H. Poincaré, Anal. non linéaire (to appear). | Numdam | Zbl
and ,[18] Su un tipo di convergenza variazionale. Atti. Accad. Naz. Lincei Rend. Cl. Sci. Mat. Fis. Natur. 58 (1975) 842-850. | Zbl
and ,[19] Les inéquations en mécanique et en physique. Dunod, Paris (1972). | Zbl
and ,[20] Problemi elastostatici con vincoli unilaterali: il problema di Signorini con ambigue condizioni al contorno. Mem. Accad. Naz. Lincei, Serie 8 7 (1964) 91-140. | Zbl
,[21] An effect of double homogenization for Dirichlet problems in variable domains of general structure. C. R. Acad. Sci. Paris Sér. I Math. 328 (1999) 1151-1156. | Zbl
,[22] Variational inequalities. Comm. Pure Appl. Math. 20 (1967) 493-519. | Zbl
and ,[23] Boundary Value Problems in Domains with Fine-Grained Boundary (in russian). Naukova Dumka, Kiev (1974). | Zbl
and ,[24] -convergence, Séminaire d'Analyse Fonctionnelle et Numérique de l'université d'Alger 1977-1978, multigraphied, 34 p. English translation: F. Murat and L. Tartar, -convergence, in Topics in the Mathematical Modelling of Composite Materials, A. Cherkaev and R.V. Khon, Eds. Birkhäuser, Boston, Progr. Nonlinear Differential Equations Appl. 31 (1997) 21-43. | Zbl
,[25] Sopra alcune questioni di Elastostatica. Atti della Soc. Ital. per il Progresso della Scienze (1963). | JFM
,[26] Nonlinear Elliptic Boundary Value Problems. Teubner-Verlag, Leipzig (1986). | MR | Zbl
,[27] Problèmes d'homogénéisation dans les équations aux dérivées partielles. Cours Peccot, Collège de France (1977) (Partially written in [24]).
,[28] Quelques remarques sur l'homogénéisation, in Functional Analysis and Numerical Analysis, Proceedings of the Japan-France Seminar 1976, H. Fujita, Ed. Japan Society for the Promotion of Science, Tokyo (1978) 469-482.
,Cité par Sources :