We present a domain decomposition theory on an interface problem for the linear transport equation between a diffusive and a non-diffusive region. To leading order, i.e. up to an error of the order of the mean free path in the diffusive region, the solution in the non-diffusive region is independent of the density in the diffusive region. However, the diffusive and the non-diffusive regions are coupled at the interface at the next order of approximation. In particular, our algorithm avoids iterating the diffusion and transport solutions as is done in most other methods - see for example Bal-Maday (2002). Our analysis is based instead on an accurate description of the boundary layer at the interface matching the phase-space density of particles leaving the non-diffusive region to the bulk density that solves the diffusion equation.
Keywords: domain decomposition, transport equation, diffusion approximation, kinetic-fluid coupling
@article{M2AN_2003__37_6_869_0, author = {Golse, Fran\c{c}ois and Jin, Shi and Levermore, C. David}, title = {A domain decomposition analysis for a two-scale linear transport problem}, journal = {ESAIM: Mod\'elisation math\'ematique et analyse num\'erique}, pages = {869--892}, publisher = {EDP-Sciences}, volume = {37}, number = {6}, year = {2003}, doi = {10.1051/m2an:2003059}, mrnumber = {2026400}, zbl = {1078.65125}, language = {en}, url = {http://archive.numdam.org/articles/10.1051/m2an:2003059/} }
TY - JOUR AU - Golse, François AU - Jin, Shi AU - Levermore, C. David TI - A domain decomposition analysis for a two-scale linear transport problem JO - ESAIM: Modélisation mathématique et analyse numérique PY - 2003 SP - 869 EP - 892 VL - 37 IS - 6 PB - EDP-Sciences UR - http://archive.numdam.org/articles/10.1051/m2an:2003059/ DO - 10.1051/m2an:2003059 LA - en ID - M2AN_2003__37_6_869_0 ER -
%0 Journal Article %A Golse, François %A Jin, Shi %A Levermore, C. David %T A domain decomposition analysis for a two-scale linear transport problem %J ESAIM: Modélisation mathématique et analyse numérique %D 2003 %P 869-892 %V 37 %N 6 %I EDP-Sciences %U http://archive.numdam.org/articles/10.1051/m2an:2003059/ %R 10.1051/m2an:2003059 %G en %F M2AN_2003__37_6_869_0
Golse, François; Jin, Shi; Levermore, C. David. A domain decomposition analysis for a two-scale linear transport problem. ESAIM: Modélisation mathématique et analyse numérique, Volume 37 (2003) no. 6, pp. 869-892. doi : 10.1051/m2an:2003059. http://archive.numdam.org/articles/10.1051/m2an:2003059/
[1] Coupling of Transport and Diffusion Models in Linear Transport Theory. ESAIM: M2AN 36 (2002) 69-86. | Numdam | Zbl
and ,[2] Diffusion approximation and computation of critical size. Trans. Amer. Math. Soc. 284 (1984) 617-649. | Zbl
, and ,[3] Boundary layers and homogenization of transport processes. Publ. Res. Inst. Math. Sci. 15 (1979) 53-157. | Zbl
, and ,[4] Coupling Boltzmann and Euler equations without overlapping, in Domain decomposition methods in science and engineering (Como, 1992). Amer. Math. Soc., Providence, RI, Contemp. Math. 157 (1994) 377-398. | Zbl
, , and ,[5] Diffusion limit of the Lorentz model: asymptotic preserving schemes. ESAIM: M2AN 36 (2002) 631-655. | Numdam | Zbl
, , and ,[6] Radiative Transfer. Dover, New York (1960). | MR
,[7] Analyse Mathèmatique et Calcul Numérique pour les Sciences et les Techniques. Collection du Commissariat à l'Énergie Atomique: Série Scientifique, Masson, Paris (1985). | Zbl
and ,[8] Kinetic boundary layers and fluid-kinetic coupling in semiconductors. Transport Theory Statist. Phys. 28 (1999) 31-55. | Zbl
and ,[9] Kinetic fluid coupling in the field of the atomic vapor laser isotopic separation: numerical results in the case of a mono-species perfect gas, presented at the 23rd International Symposium on Rarefied Gas Dynamics, Whistler (British Columbia), July (2002).
,[10] Applications of the Boltzmann equation within the context of upper atmosphere vehicle aerodynamics. Comput. Methods Appl. Mech. Engrg. 75 (1989) 299-316. | MR | Zbl
,[11] Knudsen layers from a computational viewpoint. Transport Theory Statist. Phys. 21 (1992) 211-236. | Zbl
,[12] The convergence of numerical transfer schemes in diffusive regimes, I. The dicrete-ordinate method. SIAM J. Numer. Anal. 36 (1999) 1333-1369. | Zbl
, and ,[13] Numerical modeling of gas flows in the transition between rarefied and continuum regimes. Numerical flow simulation I, (Marseille, 1997). Vieweg, Braunschweig, Notes Numer. Fluid Mech. 66 (1998) 222-241.
, , and ,[14] The discrete-ordinate method in diffusive regimes. Transport Theory Statist. Phys. 20 (1991) 413-439. | Zbl
and ,[15] Fully discrete numerical transfer in diffusive regimes. Transport Theory Statist. Phys. 22 (1993) 739-791. | Zbl
and ,[16] Uniformly accurate diffusive relaxation schemes for multiscale transport equations. SIAM J. Numer. Anal. 38 (2000) 913-936. | MR | Zbl
, and ,[17] Convergence of alternating domain decomposition schemes for kinetic and aerodynamic equations. Math. Methods Appl. Sci. 18 (1995) 649-670. | Zbl
,[18] Asymptotic-induced domain decomposition methods for kinetic and drift-diffusion semiconductor equations. SIAM J. Sci. Comput. 19 (1998) 2032-2050. | Zbl
,[19] An asymptotic-induced scheme for nonstationary transport equations in the diffusive limit. SIAM J. Numer. Anal. 35 (1998) 1073-1094. | MR | Zbl
,[20] Transition from kinetic theory to macroscopic fluid equations: a problem for domain decomposition and a source for new algorithm. Transport Theory Statist. Phys. 29 (2000) 93-106. | Zbl
, and ,[21] Boundary layers and domain decomposition for radiative heat transfer and diffusion equations: applications to glass manufacturing process. European J. Appl. Math. 9 (1998) 351-372. | Zbl
and ,[22] Asymptotic solutions of numerical transport problems in optically thick, diffusive regimes. J. Comput. Phys. 69 (1987) 283-324. | Zbl
, and ,[23] On the spectrum of an unsymmetric operator arising in the transport theory of neutrons. Comm. Pure Appl. Math. 8 (1955) 217-234. | Zbl
and ,[24] Coupling Boltzmann and Navier-Stokes equations by half fluxes. J. Comput. Phys. 136 (1997) 51-67. | Zbl
and ,[25] Convergence analysis of domain decomposition algorithms with full overlapping for the advection-diffusion problems. Math. Comp. 68 (1999) 585-606. | Zbl
and ,[26] New models for the solution of intermediate regimes in transport theory and radiative transfer: existence theory, positivity, asymptotic analysis, and approximations. J. Statist. Phys. 104 (2001) 291-325. | Zbl
,[27] Über eine Klasse singulärer Integralgleichungen, Sitzber. Preuss. Akad. Wiss., Sitzung der phys.-math. Klasse, Berlin (1931) 696-706. | Zbl
and ,Cited by Sources: