The Benney-Luke equation (BL) is a model for the evolution of three-dimensional weakly nonlinear, long water waves of small amplitude. In this paper we propose a nearly conservative scheme for the numerical resolution of (BL). Moreover, it is known (Paumond, Differential Integral Equations 16 (2003) 1039-1064; Pego and Quintero, Physica D 132 (1999) 476-496) that (BL) is linked to the Kadomtsev-Petviashvili equation for almost one-dimensional waves propagating in one direction. We study here numerically the link between (KP) and (BL) and we point out the coupling effects emerging by considering two solitary waves propagating in two opposite directions.
Keywords: Benney-Luke, Kadomtsev-Petviashvili, spectral method, long wave limit
@article{M2AN_2004__38_3_419_0, author = {Labb\'e, St\'ephane and Paumond, Lionel}, title = {Numerical comparisons of two long-wave limit models}, journal = {ESAIM: Mod\'elisation math\'ematique et analyse num\'erique}, pages = {419--436}, publisher = {EDP-Sciences}, volume = {38}, number = {3}, year = {2004}, doi = {10.1051/m2an:2004020}, mrnumber = {2075753}, zbl = {1130.76324}, language = {en}, url = {http://archive.numdam.org/articles/10.1051/m2an:2004020/} }
TY - JOUR AU - Labbé, Stéphane AU - Paumond, Lionel TI - Numerical comparisons of two long-wave limit models JO - ESAIM: Modélisation mathématique et analyse numérique PY - 2004 SP - 419 EP - 436 VL - 38 IS - 3 PB - EDP-Sciences UR - http://archive.numdam.org/articles/10.1051/m2an:2004020/ DO - 10.1051/m2an:2004020 LA - en ID - M2AN_2004__38_3_419_0 ER -
%0 Journal Article %A Labbé, Stéphane %A Paumond, Lionel %T Numerical comparisons of two long-wave limit models %J ESAIM: Modélisation mathématique et analyse numérique %D 2004 %P 419-436 %V 38 %N 3 %I EDP-Sciences %U http://archive.numdam.org/articles/10.1051/m2an:2004020/ %R 10.1051/m2an:2004020 %G en %F M2AN_2004__38_3_419_0
Labbé, Stéphane; Paumond, Lionel. Numerical comparisons of two long-wave limit models. ESAIM: Modélisation mathématique et analyse numérique, Volume 38 (2004) no. 3, pp. 419-436. doi : 10.1051/m2an:2004020. http://archive.numdam.org/articles/10.1051/m2an:2004020/
[1] On the evolution of packets of water waves. J. Fluid Mech. 92 (1979) 691-715. | Zbl
and ,[2] On the transverse instability of solitary waves in the Kadomtsev-Petviashvili equation. Phys. Lett. A 226 (1997) 187-192. | Zbl
, and ,[3] Rigorous derivation of Korteweg-de Vries-type systems from a general class of nonlinear hyperbolic systems. ESAIM: M2AN 34 (2000) 873-911. | Numdam | Zbl
and ,[4] The long wave limit for a general class of 2D quasilinear hyperbolic problems. Comm. Partial Differ. Equations 27 (2002) 979-1020. | Zbl
and ,[5] On the interactions of permanent waves of finite amplitude. J. Math. Phys. 43 (1964) 309-313. | Zbl
and ,[6] The generation and evolution of lump solitary waves in surface-tension-dominated flows. SIAM J. Appl. Math. 61 (2002) 731-750 (electronic). | Zbl
and ,[7] Long wave approximations for water waves. Preprint Université de Bordeaux I, U-03-22 (2003). | MR | Zbl
, and ,[8] An existence theory for water waves and the Boussinesq and Korteweg-de Vries scaling limits. Comm. Partial Differ. Equations 10 (1985) 787-1003. | Zbl
,[9] KP description of unidirectional long waves. The model case. Proc. Roy. Soc. Edinburgh Sect. A 131 (2001) 885-898. | Zbl
and ,[10] A mathematical justification for Korteweg-de Vries equation and Boussinesq equation of water surface waves. Osaka J. Math. 23 (1986) 389-413. | Zbl
and ,[11] Consistency of the KP approximation. Discrete Contin. Dyn. Syst. (suppl.) (2003) 517-525. Dynam. Syst. Differ. equations (Wilmington, NC, 2002). | Zbl
,[12] Three-dimensional water waves. Stud. Appl. Math. 97 (1996) 149-166. | Zbl
and ,[13] A pseudospectral procedure for the solution of nonlinear wave equations with examples from free-surface flows. SIAM J. Sci. Comput. 21 (1999) 1102-1114 (electronic). | Zbl
and ,[14] Towards a rigorous derivation of the fifth order KP equation. Submitted for publication (2002). | Zbl
,[15] A rigorous link between KP and a Benney-Luke equation. Differential Integral Equations 16 (2003) 1039-1064. | Zbl
,[16] Two-dimensional solitary waves for a Benney-Luke equation. Physica D 132 (1999) 476-496. | Zbl
and ,[17] The long-wave limit for the water wave problem. I. The case of zero surface tension. Comm. Pure Appl. Math. 53 (2000) 1475-1535. | Zbl
and ,Cited by Sources: