The time-dependent Stokes equations in two- or three-dimensional bounded domains are discretized by the backward Euler scheme in time and finite elements in space. The error of this discretization is bounded globally from above and locally from below by the sum of two types of computable error indicators, the first one being linked to the time discretization and the second one to the space discretization.
Keywords: time-dependent Stokes equations, a posteriori error estimates, backward Euler scheme, finite elements
@article{M2AN_2004__38_3_437_0, author = {Bernardi, Christine and Verf\"urth, R\"udiger}, title = {A posteriori error analysis of the fully discretized time-dependent {Stokes} equations}, journal = {ESAIM: Mod\'elisation math\'ematique et analyse num\'erique}, pages = {437--455}, publisher = {EDP-Sciences}, volume = {38}, number = {3}, year = {2004}, doi = {10.1051/m2an:2004021}, mrnumber = {2075754}, zbl = {1079.76042}, language = {en}, url = {http://archive.numdam.org/articles/10.1051/m2an:2004021/} }
TY - JOUR AU - Bernardi, Christine AU - Verfürth, Rüdiger TI - A posteriori error analysis of the fully discretized time-dependent Stokes equations JO - ESAIM: Modélisation mathématique et analyse numérique PY - 2004 SP - 437 EP - 455 VL - 38 IS - 3 PB - EDP-Sciences UR - http://archive.numdam.org/articles/10.1051/m2an:2004021/ DO - 10.1051/m2an:2004021 LA - en ID - M2AN_2004__38_3_437_0 ER -
%0 Journal Article %A Bernardi, Christine %A Verfürth, Rüdiger %T A posteriori error analysis of the fully discretized time-dependent Stokes equations %J ESAIM: Modélisation mathématique et analyse numérique %D 2004 %P 437-455 %V 38 %N 3 %I EDP-Sciences %U http://archive.numdam.org/articles/10.1051/m2an:2004021/ %R 10.1051/m2an:2004021 %G en %F M2AN_2004__38_3_437_0
Bernardi, Christine; Verfürth, Rüdiger. A posteriori error analysis of the fully discretized time-dependent Stokes equations. ESAIM: Modélisation mathématique et analyse numérique, Volume 38 (2004) no. 3, pp. 437-455. doi : 10.1051/m2an:2004021. http://archive.numdam.org/articles/10.1051/m2an:2004021/
[1] A posteriori analysis of the finite element discretization of some parabolic equations. Math. Comput. (to appear). | Zbl
, and ,[2] Indicateurs d'erreur pour l'équation de la chaleur. Rev. Européenne Élém. Finis 9 (2000) 425-438. | Zbl
and ,[3] Analyse numérique d'indicateurs d'erreur, in Maillage et adaptation. P.-L. George Ed., Hermès (2001) 251-278.
, and ,[4] The finite element method for parabolic equations. I. A posteriori error estimation. Numer. Math. 40 (1982) 339-371. | Zbl
and ,[5] The finite element method for parabolic equations. II. A posteriori error estimation and adaptive approach. Numer. Math. 40 (1982) 373-406. | Zbl
and ,[6] Approximation by finite element functions using local regularization. RAIRO Anal. Numér. 9 (1975) 77-84. | Numdam | Zbl
,[7] Adaptive finite element methods for parabolic problems. I. A linear model problem. SIAM J. Numer. Anal. 28 (1991) 43-77. | Zbl
and ,[8] Adaptive finite element methods for parabolic problems. IV. Nonlinear problems. SIAM J. Numer. Anal. 32 (1995) 1729-1749. | Zbl
and ,[9] Finite Element Approximation of the Navier-Stokes Equations. Springer-Verlag, Lect. Notes Math. 749 (1979). | Zbl
and ,[10] Finite-element approximation of the nonstationary Navier-Stokes problem. Part IV: Error analysis for second-order time discretization. SIAM J. Numer. Anal. 27 (1990) 353-384. | Zbl
and ,[11] An a posteriori error estimate and adaptive timestep control for a backward Euler discretization of a parabolic problem. SIAM J. Numer. Anal. 27 (1990) 277-291. | Zbl
, and ,[12] Adaptive finite elements for a linear parabolic problem. Comput. Methods Appl. Mech. Engrg. 167 (1998) 223-237. | Zbl
,[13] Consistency, stability, a priori and a posteriori errors for Petrov-Galerkin methods applied to nonlinear problems. Numer. Math. 69 (1994) 213-231. | Zbl
and ,[14] Theory and Numerical Analysis of the Navier-Stokes Equations. North-Holland (1977). | Zbl
,[15] A Review of A Posteriori Error Estimation and Adaptive Mesh-Refinement Techniques. Wiley & Teubner (1996). | Zbl
,[16] A posteriori error estimates for nonlinear problems: -error estimates for finite element discretizations of parabolic equations. Numer. Methods Partial Differential Equations 14 (1998) 487-518. | Zbl
,[17] A posteriori error estimates for nonlinear problems 67 (1998) 1335-1360. | Zbl
,[18] Error estimates for some quasi-interpolation operators. ESAIM: M2AN 33 (1999) 695-713. | Numdam | Zbl
,[19] A posteriori error estimation techniques for non-linear elliptic and parabolic pdes, Rev. Européenne Élém. Finis 9 (2000) 377-402. | Zbl
,Cited by Sources: