In the reliability theory, the availability of a component, characterized by non constant failure and repair rates, is obtained, at a given time, thanks to the computation of the marginal distributions of a semi-Markov process. These measures are shown to satisfy classical transport equations, the approximation of which can be done thanks to a finite volume method. Within a uniqueness result for the continuous solution, the convergence of the numerical scheme is then proven in the weak measure sense, and some numerical applications, which show the efficiency and the accuracy of the method, are given.
Mots clés : renewal equation, semi-Markov process, convergence of a finite volume scheme
@article{M2AN_2004__38_5_853_0, author = {Cocozza-Thivent, Christiane and Eymard, Robert}, title = {Approximation of the marginal distributions of a {semi-Markov} process using a finite volume scheme}, journal = {ESAIM: Mod\'elisation math\'ematique et analyse num\'erique}, pages = {853--875}, publisher = {EDP-Sciences}, volume = {38}, number = {5}, year = {2004}, doi = {10.1051/m2an:2004043}, mrnumber = {2104432}, zbl = {1078.60075}, language = {en}, url = {http://archive.numdam.org/articles/10.1051/m2an:2004043/} }
TY - JOUR AU - Cocozza-Thivent, Christiane AU - Eymard, Robert TI - Approximation of the marginal distributions of a semi-Markov process using a finite volume scheme JO - ESAIM: Modélisation mathématique et analyse numérique PY - 2004 SP - 853 EP - 875 VL - 38 IS - 5 PB - EDP-Sciences UR - http://archive.numdam.org/articles/10.1051/m2an:2004043/ DO - 10.1051/m2an:2004043 LA - en ID - M2AN_2004__38_5_853_0 ER -
%0 Journal Article %A Cocozza-Thivent, Christiane %A Eymard, Robert %T Approximation of the marginal distributions of a semi-Markov process using a finite volume scheme %J ESAIM: Modélisation mathématique et analyse numérique %D 2004 %P 853-875 %V 38 %N 5 %I EDP-Sciences %U http://archive.numdam.org/articles/10.1051/m2an:2004043/ %R 10.1051/m2an:2004043 %G en %F M2AN_2004__38_5_853_0
Cocozza-Thivent, Christiane; Eymard, Robert. Approximation of the marginal distributions of a semi-Markov process using a finite volume scheme. ESAIM: Modélisation mathématique et analyse numérique, Tome 38 (2004) no. 5, pp. 853-875. doi : 10.1051/m2an:2004043. http://archive.numdam.org/articles/10.1051/m2an:2004043/
[1] Fitting phase-type pistributions via the EM algorithm. Scand. J. Statist. 23 (1996) 419-441. | Zbl
,[2] Introduction to Stochastic processes. Prentice-Hall (1975). | MR | Zbl
,[3] Processus stochastiques et fiabilité des systèmes. Springer, Paris, Collection Mathématiques & Applications 28 (1997). | MR | Zbl
,[4] Marginal distributions of a semi-Markov process and their computations, Ninth ISSAT International Conference on Reliability and Quality in Design, International Society of Science and Applied Technologies, H. Pham and S. Yamada Eds. (2003).
and ,[5] Semi-Markov process for reliability studies. ESAIM: PS 1 (1997) 207-223. | Numdam | Zbl
and ,[6] A general framework for some asymptotic reliability formulas. Adv. Appl. Prob. 32 (2000) 446-467. | Zbl
and ,[7] On the marginal distributions of Markov processes used in dynamic reliability, Prépublications du Laboratoire d'Analyse et de Mathématiques Appliquées UMR CNRS 8050, 2/2003 (January 2003).
, , and ,[8] A numerical scheme to solve integro-differential equations in the dynamic reliability field, PSAM7-ESREL'04, Berlin (June 2004).
, and ,[9] Méthodologie et algorithmes pour la quantification de petits systèmes redondants
, and ,[10] Renewal Theory. Chapman and Hall, London (1982).
,[11] Finite Volume Methods, Handbook of Numerical Analysis, P.G. Ciarlet and J.L. Lions Eds., VII (2000) 723-1020. | Zbl
, and ,[12] An Introduction to Probability Theory and its Applications. Volume II, Wiley (1966). | MR | Zbl
,[13] Notes on the Analytic Description and Numerical Calculation of the Time Dependent Availability, MMR'2000: Second International Conference on Mathematical Methods in Reliability, Bordeaux, France, July 4-7 (2000) 413-416.
, and ,[14] Stability in a nonlinear population maturation model. Math. Models Met. App. Sci. 12 (2002) 1-22. | Zbl
, and ,Cité par Sources :