Solutions of a nonhyperbolic pair of balance laws
ESAIM: Modélisation mathématique et analyse numérique, Tome 39 (2005) no. 1, pp. 37-58.

We describe a constructive algorithm for obtaining smooth solutions of a nonlinear, nonhyperbolic pair of balance laws modeling incompressible two-phase flow in one space dimension and time. Solutions are found as stationary solutions of a related hyperbolic system, based on the introduction of an artificial time variable. As may be expected for such nonhyperbolic systems, in general the solutions obtained do not satisfy both components of the given initial data. This deficiency may be overcome, however, by introducing an alternative “solution” satisfying both components of the initial data and an approximate form of a corresponding linearized system.

DOI : 10.1051/m2an:2005003
Classification : 35M99, 35Q35, 76T10
Mots clés : nonhyperbolic balance laws, incompressible two-fluid flow
@article{M2AN_2005__39_1_37_0,
     author = {Sever, Michael},
     title = {Solutions of a nonhyperbolic pair of balance laws},
     journal = {ESAIM: Mod\'elisation math\'ematique et analyse num\'erique},
     pages = {37--58},
     publisher = {EDP-Sciences},
     volume = {39},
     number = {1},
     year = {2005},
     doi = {10.1051/m2an:2005003},
     mrnumber = {2136199},
     zbl = {1080.35092},
     language = {en},
     url = {http://archive.numdam.org/articles/10.1051/m2an:2005003/}
}
TY  - JOUR
AU  - Sever, Michael
TI  - Solutions of a nonhyperbolic pair of balance laws
JO  - ESAIM: Modélisation mathématique et analyse numérique
PY  - 2005
SP  - 37
EP  - 58
VL  - 39
IS  - 1
PB  - EDP-Sciences
UR  - http://archive.numdam.org/articles/10.1051/m2an:2005003/
DO  - 10.1051/m2an:2005003
LA  - en
ID  - M2AN_2005__39_1_37_0
ER  - 
%0 Journal Article
%A Sever, Michael
%T Solutions of a nonhyperbolic pair of balance laws
%J ESAIM: Modélisation mathématique et analyse numérique
%D 2005
%P 37-58
%V 39
%N 1
%I EDP-Sciences
%U http://archive.numdam.org/articles/10.1051/m2an:2005003/
%R 10.1051/m2an:2005003
%G en
%F M2AN_2005__39_1_37_0
Sever, Michael. Solutions of a nonhyperbolic pair of balance laws. ESAIM: Modélisation mathématique et analyse numérique, Tome 39 (2005) no. 1, pp. 37-58. doi : 10.1051/m2an:2005003. http://archive.numdam.org/articles/10.1051/m2an:2005003/

[1] D. Amadori, L. Gosse and G. Guerra, Global BV entropy solutions and uniqueness for hyperbolic systems of balance laws. Arch. Ration. Mech. Anal. 162 (2002) 327-366. | Zbl

[2] A. Bressan, Hyperbolic Systems of Conservation Laws: the One-dimensional Cauchy Problem. Oxford University Press (2000). | MR | Zbl

[3] R.J. Diperna, Uniqueness of solutions to hyperbolic conservation laws. Indiana Univ. Math. J. 28 (1979) 202-212. | Zbl

[4] T.N. Dinh, R.R. Nourgaliev and T.G. Theofanous, Understanding the ill-posed two-fluid model, in Proc. of the 10th International Topical Meeting on Nuclear Reactor Thermal Hydraulics (NURETH-10) Seoul, Korea (October 2003).

[5] D.A. Drew and S.L. Passman, Theory of Multicomponent Fluids. Springer, New York (1999). | MR | Zbl

[6] S.K. Godunov, An interesting class of quasilinear systems. Dokl. Akad. Nauk SSR 139 (1961) 521-523. | Zbl

[7] M. Ishii, Thermo-fluid dynamic theory of two-phase flow. Eyrolles, Paris (1975). | Zbl

[8] B.L. Keyfitz, R. Sanders and M. Sever, Lack of hyperbolicity in the two-fluid model for two-phase incompressible flow. Discrete Contin. Dynam. Systems, Series B 3 (2003) 541-563. | Zbl

[9] B.L. Keyfitz, M. Sever and F. Zhang, Viscous singular shock structure for a nonhyperbolic two-fluid model. Nonlinearity 17 (2004) 1731-1747. | Zbl

[10] H.-O. Kreiss and J. Ystrom, Parabolic problems which are ill-posed in the zero dissipation limit. Math. Comput. Model. 35 (2002) 1271-1295. | Zbl

[11] M.S. Mock, Systems of conservation laws of mixed type. J. Diff. Equations 37 (1980) 70-88. | Zbl

[12] H. Ransom and D.L. Hicks, Hyperbolic two-pressure models for two-phase flow. J. Comput. Phys. 53 (1984) 124-151. | Zbl

[13] R. Sanders and M. Sever, Computations with singular shocks (2005) (preprint).

[14] S. Sever, A model of discontinuous, incompressible two-phase flow (2005) (preprint).

[15] H.B. Stewart and B. Wendroff, Two-phase flow: models and methods. J. Comput. Phys. 56 (1984) 363-409. | Zbl

Cité par Sources :