A reduced basis element method for the steady Stokes problem
ESAIM: Modélisation mathématique et analyse numérique, Volume 40 (2006) no. 3, pp. 529-552.

The reduced basis element method is a new approach for approximating the solution of problems described by partial differential equations. The method takes its roots in domain decomposition methods and reduced basis discretizations. The basic idea is to first decompose the computational domain into a series of subdomains that are deformations of a few reference domains (or generic computational parts). Associated with each reference domain are precomputed solutions corresponding to the same governing partial differential equation, but solved for different choices of deformations of the reference subdomains and mapped onto the reference shape. The approximation corresponding to a new shape is then taken to be a linear combination of the precomputed solutions, mapped from the generic computational part to the actual computational part. We extend earlier work in this direction to solve incompressible fluid flow problems governed by the steady Stokes equations. Particular focus is given to satisfying the inf-sup condition, to a posteriori error estimation, and to “gluing” the local solutions together in the multidomain case.

DOI: 10.1051/m2an:2006021
Classification: 65C20, 65N15, 65N30, 65N35, 76D07, 93A30
Keywords: Stokes flow, reduced basis, reduced order model, domain decomposition, mortar method, output bounds, a posteriori error estimators
     author = {L{\o}vgren, Alf Emil and Maday, Yvon and R{\o}nquist, Einar M.},
     title = {A reduced basis element method for the steady {Stokes} problem},
     journal = {ESAIM: Mod\'elisation math\'ematique et analyse num\'erique},
     pages = {529--552},
     publisher = {EDP-Sciences},
     volume = {40},
     number = {3},
     year = {2006},
     doi = {10.1051/m2an:2006021},
     mrnumber = {2245320},
     zbl = {1129.76036},
     language = {en},
     url = {http://archive.numdam.org/articles/10.1051/m2an:2006021/}
AU  - Løvgren, Alf Emil
AU  - Maday, Yvon
AU  - Rønquist, Einar M.
TI  - A reduced basis element method for the steady Stokes problem
JO  - ESAIM: Modélisation mathématique et analyse numérique
PY  - 2006
SP  - 529
EP  - 552
VL  - 40
IS  - 3
PB  - EDP-Sciences
UR  - http://archive.numdam.org/articles/10.1051/m2an:2006021/
DO  - 10.1051/m2an:2006021
LA  - en
ID  - M2AN_2006__40_3_529_0
ER  - 
%0 Journal Article
%A Løvgren, Alf Emil
%A Maday, Yvon
%A Rønquist, Einar M.
%T A reduced basis element method for the steady Stokes problem
%J ESAIM: Modélisation mathématique et analyse numérique
%D 2006
%P 529-552
%V 40
%N 3
%I EDP-Sciences
%U http://archive.numdam.org/articles/10.1051/m2an:2006021/
%R 10.1051/m2an:2006021
%G en
%F M2AN_2006__40_3_529_0
Løvgren, Alf Emil; Maday, Yvon; Rønquist, Einar M. A reduced basis element method for the steady Stokes problem. ESAIM: Modélisation mathématique et analyse numérique, Volume 40 (2006) no. 3, pp. 529-552. doi : 10.1051/m2an:2006021. http://archive.numdam.org/articles/10.1051/m2an:2006021/

[1] R. Aris, Vectors, tensors and the basic equations of fluid mechanics. Dover Publications (1989). | Zbl

[2] I. Babuska, Error-bounds for finite element method. Numer. Math. 16 (1971) 322-333. | EuDML | Zbl

[3] B.F. Belgacem, The mortar finite element method with Lagrange multipliers. Numer. Math. 84 (1999) 173-197. | Zbl

[4] B.F. Belgacem, C. Bernardi, N. Chorfi and Y. Maday, Inf-sup conditions for the mortar spectral element discretization of the Stokes problem. Numer. Math. 85 (2000) 257-281. | Zbl

[5] C. Bernardi and Y. Maday, Polynomial approximation of some singular functions. Appl. Anal. 42 (1992) 1-32. | Zbl

[6] F. Brezzi, On the existence, uniqueness and approximation of saddle-point problems arising from Lagrange multipliers. RAIRO Anal. Numér. 8 (1974) 129-151. | EuDML | Numdam | Zbl

[7] F. Brezzi and M. Fortin, Mixed and Hybrid Finite Element Methods. Springer Verlag (1991). | MR | Zbl

[8] J.P. Fink and W.C. Rheinboldt, On the error behavior of the reduced basis technique in nonlinear finite element approximations. Z. Angew. Math. Mech. 63 (1983) 21-28. | Zbl

[9] W.J. Gordon and C.A. Hall, Construction of curvilinear co-ordinate systems and applications to mesh generation. Int. J. Numer. Meth. Eng. 7 (1973) 461-477. | Zbl

[10] Y. Maday and A.T. Patera, Spectral element methods for the Navier-Stokes equations. In Noor A. Ed., State of the Art Surveys in Computational Mechanics (1989) 71-143. | Zbl

[11] Y. Maday and E.M. Rønquist, A reduced-basis element method. J. Sci. Comput. 17 (2002) 447-459. | Zbl

[12] Y. Maday and E.M. Rønquist, The reduced-basis element method: application to a thermal fin problem. SIAM J. Sci. Comput. 26 (2004) 240-258. | Zbl

[13] Y. Maday, A.T. Patera, and E.M. Rønquist, The P N ×P N-2 method for the approximation of the Stokes problem. Technical Report No. 92009, Department of Mechanical Engineering, Massachusetts Institute of Technology (1992).

[14] Y. Maday, D. Meiron, A.T. Patera and E.M. Rønquist, Analysis of iterative methods for the steady and unsteady Stokes problem: Application to spectral element discretizations. SIAM J. Sci. Stat. Comp. (1993) 310-337. | Zbl

[15] A.K. Noor and J.M. Peters, Reduced basis technique for nonlinear analysis of structures. AIAA J. 19 (1980) 455-462.

[16] C. Prud'Homme, D.V. Rovas, K. Veroy, L. Machiels, Y. Maday, A.T. Patera and G. Turinici, Reliable real-time solution of parametrized partial differential equations: Reduced basis output bound methods. J. Fluid Eng. 124 (2002) 70-80.

[17] P.A. Raviart and J.M. Thomas, A mixed finite element method for 2-nd order elliptic problems, in Mathematical Aspects of Finite Element Methodes, Lec. Notes Math. 606 I. Galligani and E. Magenes Eds., Springer-Verlag (1977). | MR | Zbl

[18] D.V. Rovas, Reduced-Basis Output Bound Methods for Parametrized Partial Differential Equations. Ph.D. thesis, Massachusetts Institute of Technology, Cambridge, MA (October 2002).

[19] K. Veroy, C. Prud'Homme, D.V. Rovas and A.T. Patera, A Posteriori error bounds for reduced-basis approximation of parametrized noncoercive and nonlinear elliptic partial differential equations (AIAA Paper 2003-3847), in Proceedings of the 16th AIAA Computational Fluid Dynamics Conference (June 2003).

Cited by Sources: