We prove an a priori error estimate for the -version of the boundary element method with hypersingular operators on piecewise plane open or closed surfaces. The underlying meshes are supposed to be quasi-uniform. The solutions of problems on polyhedral or piecewise plane open surfaces exhibit typical singularities which limit the convergence rate of the boundary element method. On closed surfaces, and for sufficiently smooth given data, the solution is -regular whereas, on open surfaces, edge singularities are strong enough to prevent the solution from being in . In this paper we cover both cases and, in particular, prove an a priori error estimate for the -version with quasi-uniform meshes. For open surfaces we prove a convergence like , being the mesh size and denoting the polynomial degree. This result had been conjectured previously.
Mots-clés : $hp$-version with quasi-uniform meshes, boundary element method, singularities
@article{M2AN_2008__42_5_821_0, author = {Bespalov, Alexei and Heuer, Norbert}, title = {The $hp$-version of the boundary element method with quasi-uniform meshes in three dimensions}, journal = {ESAIM: Mod\'elisation math\'ematique et analyse num\'erique}, pages = {821--849}, publisher = {EDP-Sciences}, volume = {42}, number = {5}, year = {2008}, doi = {10.1051/m2an:2008025}, mrnumber = {2454624}, zbl = {1154.41300}, language = {en}, url = {http://archive.numdam.org/articles/10.1051/m2an:2008025/} }
TY - JOUR AU - Bespalov, Alexei AU - Heuer, Norbert TI - The $hp$-version of the boundary element method with quasi-uniform meshes in three dimensions JO - ESAIM: Modélisation mathématique et analyse numérique PY - 2008 SP - 821 EP - 849 VL - 42 IS - 5 PB - EDP-Sciences UR - http://archive.numdam.org/articles/10.1051/m2an:2008025/ DO - 10.1051/m2an:2008025 LA - en ID - M2AN_2008__42_5_821_0 ER -
%0 Journal Article %A Bespalov, Alexei %A Heuer, Norbert %T The $hp$-version of the boundary element method with quasi-uniform meshes in three dimensions %J ESAIM: Modélisation mathématique et analyse numérique %D 2008 %P 821-849 %V 42 %N 5 %I EDP-Sciences %U http://archive.numdam.org/articles/10.1051/m2an:2008025/ %R 10.1051/m2an:2008025 %G en %F M2AN_2008__42_5_821_0
Bespalov, Alexei; Heuer, Norbert. The $hp$-version of the boundary element method with quasi-uniform meshes in three dimensions. ESAIM: Modélisation mathématique et analyse numérique, Tome 42 (2008) no. 5, pp. 821-849. doi : 10.1051/m2an:2008025. http://archive.numdam.org/articles/10.1051/m2an:2008025/
[1] Explicit polynomial preserving trace liftings on a triangle. Math. Nachr. (to appear).
and ,[2] The approximation theory for the -version finite element method and application to non-linear elliptic PDEs. Numer. Math. 82 (1999) 351-388. | MR | Zbl
and ,[3] The -MITC finite element method for the Reissner-Mindlin plate problem. J. Comput. Appl. Math. 148 (2002) 429-462. | MR | Zbl
and ,[4] The conditioning of boundary element equations on locally refined meshes and preconditioning by diagonal scaling. SIAM J. Numer. Anal. 36 (1999) 1901-1932. | MR | Zbl
, and ,[5] Optimal estimates for lower and upper bounds of approximation errors in the -version of the finite element method in two dimensions. Numer. Math. 85 (2000) 219-255. | MR | Zbl
and ,[6] The - version of the finite element method with quasiuniform meshes. RAIRO Modél. Math. Anal. Numér. 21 (1987) 199-238. | Numdam | MR | Zbl
and ,[7] The optimal convergence rate of the -version of the finite element method. SIAM J. Numer. Anal. 24 (1987) 750-776. | MR | Zbl
and ,[8] The treatment of nonhomogeneous Dirichlet boundary conditions by the -version of the finite element method. Numer. Math. 55 (1989) 97-121. | MR | Zbl
and ,[9] Direct and inverse error estimates for finite elements with mesh refinement. Numer. Math. 33 (1979) 447-471. | MR | Zbl
, and ,[10] Interpolation Spaces, Grundlehren der mathematischen Wissenschaften 223. Springer-Verlag, Berlin (1976). | MR | Zbl
and ,[11] The -version of the boundary element method for hypersingular operators on piecewise plane open surfaces. Numer. Math. 100 (2005) 185-209. | MR | Zbl
and ,[12] The -version of the boundary element method for weakly singular operators on piecewise plane open surfaces. Numer. Math. 106 (2007) 69-97. | MR | Zbl
and ,[13] The Finite Element Method for Elliptic Problems. North-Holland, Amsterdam (1978). | MR | Zbl
,[14] Boundary integral operators on Lipschitz domains: Elementary results. SIAM J. Math. Anal. 19 (1988) 613-626. | MR | Zbl
,[15] Polynomial exact sequences and projection-based interpolation with applications to Maxwell equations, in Mixed Finite Elements, Compatibility Conditions and Applications, D. Boffi and L. Gastaldi Eds., Lecture Notes in Mathematics 1939, Springer-Verlag (2008). | MR | Zbl
,[16] interpolation error estimates for edge finite elements of variable order in two dimensions. SIAM J. Numer. Anal. 41 (2003) 1195-1208. | MR | Zbl
and ,[17] An adaptive boundary element method for the exterior Stokes problem in three dimensions. IMA J. Numer. Anal. 26 (2006) 297-325. | MR | Zbl
and ,[18] Elliptic Problems in Nonsmooth Domains. Pitman Publishing Inc., Boston (1985). | MR | Zbl
,[19] Approximation theory for the -version of the finite element method in three dimensions. Part 1: Approximabilities of singular functions in the framework of the Jacobi-weighted Besov and Sobolev spaces. SIAM J. Numer. Anal. 44 (2006) 246-269. | MR | Zbl
,[20] The optimal rate of convergence of the -version of the boundary element method in two dimensions. Numer. Math. 98 (2004) 499-538. | MR | Zbl
and ,[21] The optimal convergence of the - version of the boundary element method with quasiuniform meshes for elliptic problems on polygonal domains. Adv. Comp. Math. 24 (2006) 353-374. | MR | Zbl
and ,[22] An extension theorem for polynomials on triangles. Calcolo 45 (2008) 69-85. | MR
and ,[23] Exponential convergence of the -version for the boundary element method on open surfaces. Numer. Math. 83 (1999) 641-666. | MR | Zbl
, and ,[24] Non-Homogeneous Boundary Value Problems and Applications I. Springer-Verlag, New York (1972). | Zbl
and ,[25] On the - and -extension of Nédélec’s curl-conforming elements. J. Comput. Appl. Math. 53 (1994) 117-137. | MR | Zbl
,[26] Les Méthodes Directes en Théorie des Équations Elliptiques. Academia, Prague (1967). | MR
,[27] - and -Finite Element Methods. Clarendon Press, Oxford (1998). | MR | Zbl
,[28] The optimal -version approximation of singularities on polyhedra in the boundary element method. SIAM J. Numer. Anal. 33 (1996) 729-759. | MR | Zbl
and ,[29] Boundary integral equations for screen problems in . Integr. Equ. Oper. Theory 10 (1987) 257-263. | MR | Zbl
,[30] The - boundary element method for solving - and -dimensional problems. Comput. Methods Appl. Mech. Engrg. 133 (1996) 183-208. | MR | Zbl
,[31] The - version of the boundary element method on polygonal domains with quasiuniform meshes. RAIRO Modél. Math. Anal. Numér. 25 (1991) 783-807. | Numdam | MR | Zbl
and ,[32] Randwertprobleme der Elastizitätstheorie für Polyeder - Singularitäten und Approximation mit Randelementmethoden. Ph.D. thesis, Technische Hochschule Darmstadt, Germany (1989). | Zbl
,[33] Regularity of mixed boundary value problems in and boundary element methods on graded meshes. Math. Methods Appl. Sci. 12 (1990) 229-249. | MR | Zbl
and ,Cité par Sources :