Expansions for Repeated Integrals of Products with Applications to the Multivariate Normal
ESAIM: Probability and Statistics, Tome 15 (2011), pp. 340-357.

We extend Leibniz' rule for repeated derivatives of a product to multivariate integrals of a product. As an application we obtain expansions for P(a < Y < b) for Y ~ Np(0,V) and for repeated integrals of the density of Y. When V-1y > 0 in R3 the expansion for P(Y < y) reduces to one given by [H. Ruben J. Res. Nat. Bureau Stand. B 68 (1964) 3-11]. in terms of the moments of Np(0,V-1). This is shown to be a special case of an expansion in terms of the multivariate Hermite polynomials. These are given explicitly.

DOI : 10.1051/ps/2010005
Classification : 60E05, 62H05
Mots-clés : asymptotic expansion, Leibniz' rule, repeated integrals of products, multivariate Hermite polynomials, multivariate normal
@article{PS_2011__15__340_0,
     author = {Withers, Christopher S. and Nadarajah, Saralees},
     title = {Expansions for {Repeated} {Integrals} of {Products} with {Applications} to the {Multivariate} {Normal}},
     journal = {ESAIM: Probability and Statistics},
     pages = {340--357},
     publisher = {EDP-Sciences},
     volume = {15},
     year = {2011},
     doi = {10.1051/ps/2010005},
     mrnumber = {2870519},
     zbl = {1266.60024},
     language = {en},
     url = {http://archive.numdam.org/articles/10.1051/ps/2010005/}
}
TY  - JOUR
AU  - Withers, Christopher S.
AU  - Nadarajah, Saralees
TI  - Expansions for Repeated Integrals of Products with Applications to the Multivariate Normal
JO  - ESAIM: Probability and Statistics
PY  - 2011
SP  - 340
EP  - 357
VL  - 15
PB  - EDP-Sciences
UR  - http://archive.numdam.org/articles/10.1051/ps/2010005/
DO  - 10.1051/ps/2010005
LA  - en
ID  - PS_2011__15__340_0
ER  - 
%0 Journal Article
%A Withers, Christopher S.
%A Nadarajah, Saralees
%T Expansions for Repeated Integrals of Products with Applications to the Multivariate Normal
%J ESAIM: Probability and Statistics
%D 2011
%P 340-357
%V 15
%I EDP-Sciences
%U http://archive.numdam.org/articles/10.1051/ps/2010005/
%R 10.1051/ps/2010005
%G en
%F PS_2011__15__340_0
Withers, Christopher S.; Nadarajah, Saralees. Expansions for Repeated Integrals of Products with Applications to the Multivariate Normal. ESAIM: Probability and Statistics, Tome 15 (2011), pp. 340-357. doi : 10.1051/ps/2010005. http://archive.numdam.org/articles/10.1051/ps/2010005/

[1] O. Barndorff-Nielsen and B.V. Pederson, The bivariate Hermite polynomials up to order six. Scand. J. Stat. 6 (1978) 127-128. | MR | Zbl

[2] R.A. Fisher, Introduction of “Table of Hh functions”, of Airey (1931), xxvi-xxxvii, Mathematical Tables, 2nd edition 1946, 3th edition 1951. British Association for the Advancement of Science, London (1931), Vol. 1,

[3] C.R. Goodall and K.V. Mardia, A geometric derivation of the shape density. Adv. Appl. Prob. 23 (1991) 496-514. | MR | Zbl

[4] B. Holmquist, Moments and cumulants of the multivariate normal distribution. Stoch. Anal. Appl. 6 (1988) 273-278. | MR | Zbl

[5] T. Kollo and D. Von Rosen, Advanced Multivariate Statistics with Matrices. Springer, New York (2005). | MR | Zbl

[6] S. Kotz, N. Balakrishnan and N.L. Johnson, Continuous Multivariate Distributions. 2nd edition, Wiley, New York (2000) Vol. 1. | MR | Zbl

[7] S. Kotz and S. Nadarajah, Multivariate t Distributions and Their Applications. Cambridge University Press, Cambridge (2004). | MR | Zbl

[8] K.V. Mardia, Fisher's repeated normal integral function and shape distributions. J. Appl. Stat. 25 (1998) 231-235. | MR | Zbl

[9] D.B. Owen, Handbook of Statistical Tables. Addison Wesley, Reading, Massachusetts (1962). | MR | Zbl

[10] B. Presnell and P. Rumcheva, The mean resultant length of the spherically projected normal distribution. Stat. Prob. Lett. 78 (2008) 557-563. | MR | Zbl

[11] H. Ruben, An asymptotic expansion for the multivariate normal distribution and Mills ratio. J. Res. Nat. Bureau Stand. B 68 (1964) 3-11. | MR | Zbl

[12] R. Savage, Mills ratio for multivariate normal distributions. Journal of Research of the National Bureau of Standards B 66 (1962) 93-96. | Zbl

[13] G.P. Steck, Lower bounds for the multivariate normal Mills ratio. Ann. Prob. 7 (1979) 547-551. | MR | Zbl

[14] Y.L. Tong, The Multivariate Normal Distribution. Springer Verlag, New York (1990). | MR | Zbl

[15] D. Von Rosen, Infuential observations in multivariate linear models. Scand. J. Stat. 22 (1995) 207-222. | MR | Zbl

[16] C.S. Withers, A chain rule for differentiation with applications to multivariate Hermite polynomials. Bull. Aust. Math. Soc. 30 (1984) 247-250. | MR | Zbl

[17] C.S. Withers, The moments of the multivariate normal. Bull. Aust. Math. Soc. 32 (1985) 103-108. | MR | Zbl

Cité par Sources :