The P.O.T. method (Peaks Over Threshold) consists in using the generalized Pareto distribution (GPD) as an approximation for the distribution of excesses over a high threshold. In this work, we use a refinement of this approximation in order to estimate second order parameters of the model using the method of probability-weighted moments (PWM): in particular, this leads to the introduction of a new estimator for the second order parameter ρ, which will be compared to other recent estimators through some simulations. Asymptotic normality results are also proved. Our new estimator of ρ looks especially competitive when |ρ| is small.
Mots-clés : extreme values, domain of attraction, excesses, generalized Pareto distribution, probability-weighted moments, second order parameter, third order condition
@article{PS_2012__16__97_0, author = {Worms, Julien and Worms, Rym}, title = {Estimation of second order parameters using probability weighted moments}, journal = {ESAIM: Probability and Statistics}, pages = {97--113}, publisher = {EDP-Sciences}, volume = {16}, year = {2012}, doi = {10.1051/ps/2010017}, mrnumber = {2946122}, language = {en}, url = {http://archive.numdam.org/articles/10.1051/ps/2010017/} }
TY - JOUR AU - Worms, Julien AU - Worms, Rym TI - Estimation of second order parameters using probability weighted moments JO - ESAIM: Probability and Statistics PY - 2012 SP - 97 EP - 113 VL - 16 PB - EDP-Sciences UR - http://archive.numdam.org/articles/10.1051/ps/2010017/ DO - 10.1051/ps/2010017 LA - en ID - PS_2012__16__97_0 ER -
%0 Journal Article %A Worms, Julien %A Worms, Rym %T Estimation of second order parameters using probability weighted moments %J ESAIM: Probability and Statistics %D 2012 %P 97-113 %V 16 %I EDP-Sciences %U http://archive.numdam.org/articles/10.1051/ps/2010017/ %R 10.1051/ps/2010017 %G en %F PS_2012__16__97_0
Worms, Julien; Worms, Rym. Estimation of second order parameters using probability weighted moments. ESAIM: Probability and Statistics, Tome 16 (2012), pp. 97-113. doi : 10.1051/ps/2010017. http://archive.numdam.org/articles/10.1051/ps/2010017/
[1] Residual life time at a great age. Ann. Probab. 2 (1974) 792-801. | Zbl
and ,[2] A note on the asymptotic variance at optimal levels of a bias-corrected Hill estimator. Stat. Probab. Lett. 79 (2009) 295-303. | MR | Zbl
, and ,[3] Semi-parametric estimation for heavy tailed distributions. Extremes 13 (2010) 55-87. | MR | Zbl
and ,[4] Asymptotic behaviour of the probability-weighted moments and penultimate approximation. ESAIM : PS 7 (2003) 217-236. | Numdam | MR | Zbl
, and ,[5] Approximation of the distribution of excesses through a generalized probability-weighted moments method. J. Statist. Plann. Inference 137 (2007) 841-857. | MR | Zbl
, and ,[6] Approximation of the distribution of excesses through a generalized probability-weighted moments method. J. Statist. Plann. Inference 137 (2007) 841-857. | MR | Zbl
, and ,[7] Selecting the optimal sample fraction in univariate extreme value estimation. Stoc. Proc. Appl. 75 (1998) 149-172. | MR | Zbl
and ,[8] Estimation of the parameter controlling the speed of convergence in extreme value theory. Math. Methods Stat. 12 (2003) 155-176. | MR
, and ,[9] A new class of semi-parametric estimators of the second order parameter. Portugaliae Mathematica 60 (2003) 193-213. | MR | Zbl
, and ,[10] Third order extended regular variation. Publ. Inst. Math. 80 (2006) 109-120. | MR | Zbl
, and ,[11] A note on second order conditions in extreme value theory : linking general and heavy tail conditions. REVSTAT Stat. J. 5 (2007) 285-304. | MR | Zbl
, , and ,[12] “Asymptotically unbiased” estimators of the tail index based on external estimation of the second order parameter. Extremes 5 (2002) 5-31. | MR | Zbl
and ,[13] Semi-parametric estimation of the second order parameter in statistics of extremes. Extremes 5 (2002) 387-414. | MR | Zbl
, and ,[14] Adaptive estimates of parameters of regular variation. Ann. Stat. 13 (1985) 331-341. | MR | Zbl
and ,[15] Parameter and quantile estimation for the generalized Pareto distribution. Technometrics 29 (1987) 339-349. | MR | Zbl
and ,[16] Asymptotically unbiased estimator for the extreme value index. Statist. Prob. Lett. 38 (1998) 107-115. | MR | Zbl
,[17] Statistical inference using extreme order statistics. Ann. Statist. 3 (1975) 119-131. | MR | Zbl
,[18] Rate of convergence for the generalized Pareto approximation of the excesses. Adv. Applied Prob. 35 (2003) 1007-1027. | MR | Zbl
and ,[19] Approximation Theorems of Mathematical Statistics. Wiley & Son (1980). | MR | Zbl
,[20] Asymptotic Statistics. Cambridge Series in Statistical and Probabilistic Mathematics (2000). | Zbl
,[21] Penultimate approximation for the distribution of the excesses. ESAIM : PS 6 (2002) 21-31. | Numdam | MR | Zbl
,Cité par Sources :