Wiener integral for the coordinate process under the σ-finite measure unifying brownian penalisations
ESAIM: Probability and Statistics, Tome 15 (2011), pp. S69-S84.

Wiener integral for the coordinate process is defined under the σ-finite measure unifying Brownian penalisations, which has been introduced by [Najnudel et al., C. R. Math. Acad. Sci. Paris 345 (2007) 459-466] and [Najnudel et al., MSJ Memoirs 19. Mathematical Society of Japan, Tokyo (2009)]. Its decomposition before and after last exit time from 0 is studied. This study prepares for the author's recent study [K. Yano, J. Funct. Anal. 258 (2010) 3492-3516] of Cameron-Martin formula for the σ-finite measure.

DOI : 10.1051/ps/2010024
Classification : 60H05, 60J65, 46G12
Mots-clés : stochastic integral, brownian motion, Bessel process, penalisation
@article{PS_2011__15__S69_0,
     author = {Yano, Kouji},
     title = {Wiener integral for the coordinate process under the $\sigma $-finite measure unifying brownian penalisations},
     journal = {ESAIM: Probability and Statistics},
     pages = {S69--S84},
     publisher = {EDP-Sciences},
     volume = {15},
     year = {2011},
     doi = {10.1051/ps/2010024},
     language = {en},
     url = {http://archive.numdam.org/articles/10.1051/ps/2010024/}
}
TY  - JOUR
AU  - Yano, Kouji
TI  - Wiener integral for the coordinate process under the $\sigma $-finite measure unifying brownian penalisations
JO  - ESAIM: Probability and Statistics
PY  - 2011
SP  - S69
EP  - S84
VL  - 15
PB  - EDP-Sciences
UR  - http://archive.numdam.org/articles/10.1051/ps/2010024/
DO  - 10.1051/ps/2010024
LA  - en
ID  - PS_2011__15__S69_0
ER  - 
%0 Journal Article
%A Yano, Kouji
%T Wiener integral for the coordinate process under the $\sigma $-finite measure unifying brownian penalisations
%J ESAIM: Probability and Statistics
%D 2011
%P S69-S84
%V 15
%I EDP-Sciences
%U http://archive.numdam.org/articles/10.1051/ps/2010024/
%R 10.1051/ps/2010024
%G en
%F PS_2011__15__S69_0
Yano, Kouji. Wiener integral for the coordinate process under the $\sigma $-finite measure unifying brownian penalisations. ESAIM: Probability and Statistics, Tome 15 (2011), pp. S69-S84. doi : 10.1051/ps/2010024. http://archive.numdam.org/articles/10.1051/ps/2010024/

[1] A. Beck and D.P. Giesy, P-uniform convergence and a vector-valued strong law of large numbers. Trans. Amer. Math. Soc. 147 (1970) 541-559. | MR | Zbl

[2] T. Funaki, Y. Hariya and M. Yor, Wiener integrals for centered Bessel and related processes, II. ALEA Lat. Am. J. Probab. Math. Stat. 1 (2006) 225-240 (electronic). | MR | Zbl

[3] T. Funaki, Y. Hariya and M. Yor, Wiener integrals for centered powers of Bessel processes, I. Markov Process. Relat. Fields 13 (2007) 21-56. | MR | Zbl

[4] T. Funaki, Y. Hariya, F. Hirsch and M. Yor, On the construction of Wiener integrals with respect to certain pseudo-Bessel processes. Stoch. Process. Appl. 116 (2006) 1690-1711. | MR | Zbl

[5] T. Funaki, Y. Hariya, F. Hirsch and M. Yor, On some Fourier aspects of the construction of certain Wiener integrals. Stoch. Process. Appl. 117 (2007) 1-22. | MR | Zbl

[6] P. Gosselin and T. Wurzbacher, An Itô type isometry for loops in Rd via the Brownian bridge, in Séminaire de Probabilités XXXI. Lecture Notes in Math. 1655, Springer, Berlin (1997) 225-231. | Numdam | MR | Zbl

[7] T. Jeulin and M. Yor, Inégalité de Hardy, semimartingales, et faux-amis, in Séminaire de Probabilités XIII (Univ. Strasbourg, Strasbourg, 1977-1978). Lecture Notes in Math. 721, Springer, Berlin (1979) 332-359. | Numdam | MR | Zbl

[8] J. Najnudel, B. Roynette and M. Yor, A remarkable σ-finite measure on 𝒞( + , ) related to many Brownian penalisations. C. R. Math. Acad. Sci. Paris 345 (2007) 459-466. | MR | Zbl

[9] J. Najnudel, B. Roynette and M. Yor, A global view of Brownian penalisations. MSJ Memoirs 19, Mathematical Society of Japan, Tokyo (2009). | MR | Zbl

[10] B. Roynette and M. Yor, Penalising Brownian paths. Lecture Notes in Math. 1969, Springer, Berlin (2009). | MR | Zbl

[11] B. Roynette, P. Vallois and M. Yor, Some penalisations of the Wiener measure. Jpn J. Math. 1 (2006) 263-290. | MR | Zbl

[12] K. Yano, Cameron-Martin formula for the σ-finite measure unifying Brownian penalisations. J. Funct. Anal. 258 (2010) 3492-3516. | MR | Zbl

[13] K. Yano, Y. Yano and M. Yor, Penalising symmetric stable Lévy paths. J. Math. Soc. Jpn 61 (2009) 757-798. | Zbl

Cité par Sources :